CONTAMINATION OF ORGANIC PESTICIDES IN SURFACE WATER OF CHATTOGRAM METROPOLITAN AREA AND PHOTOMETRIC EFFECTS IN REMOVING THESE SUBSTANCES

Syeda Noboby Islam Roll No.: 0118/07 Registration No.: 00542 Session: 2018-2019

A thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science in Food Chemistry and Quality Assurance

> Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology Chattogram Veterinary and Animal Sciences University Chattogram-4225, Bangladesh

> > **JUNE 2020**

Authorization

I hereby declare that I am the sole author of the thesis. I also authorize the Chattogram Veterinary and Animal Sciences University (CVASU) to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the CVASU to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I, the undersigned, and author of this work, declare that the electronic copy of this thesis provided to the CVASU Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

The Author June 2020

CONTAMINATION OF ORGANIC PESTICIDES IN SURFACE WATER OF CHATTOGRAM METROPOLITAN AREA AND PHOTOMETRIC EFFECTS IN REMOVING THESE SUBSTANCES

Syeda Noboby Islam Roll No.: 0118/07 Registration No.: 00542 Session: 2018-2019

This is to certify that we have examined the above Master's thesis and have found that is complete and satisfactory in all respects, and that all revisions required by the thesis examination committee have been made

(Mr. Suvanker Saha) Supervisor Assistant Professor Dept. of Applied Chemistry and Chemical Technology

Dr. Shamsul Morshed Chairman of the Examination Committee Dept. of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology

Department of Applied Chemistry and Chemical Technology Faculty of Food Science and Technology Chattogram Veterinary and Animal Sciences University Khulshi, Chattogram-4225, Bangladesh

JUNE 2020

Acknowledgements

I sincerely appreciate the almighty Allah for His graces, strength, sustenance and above all, His faithfulness and love all along the completion of my thesis. His benevolence has made me excel and successful in making my thesis possible.

My unalloyed appreciation goes to my amiable, ever supportive and humble supervisor, **Mr. Suvanker Saha**, Assistant Professor, Department of Applied Chemistry and Chemical Technology, CVASU for his voluminous and invaluable contributions and instructions throughout my research. His encouragement and high degree of freedom to me in the course of this study is highly appreciated.

I am extremely privileged to convey my profound gratitude to **Mr. Mohammad Mozibul Haque**, Assistant Professor, Department of Applied Food Science and Nutrition, CVASU for his valuable advice, scholastic guidance, suggestions and technical support during the whole experimental period. It's also a great pleasure for me to express my heartfelt thanks and my profound gratitude to **Mr. Md. Fahad Bin Quader**, Assistant Professor, Department of Applied Chemistry and Chemical Technology, CVASU.

I would like to give special thanks to **Dr. Shamsul Morshed**, Associate Professor and Head, Department of Applied Chemistry and Chemical Technology, CVASU for his valuable advice and cordial support.

I sincerely thank to all the members of the Department of Applied Chemistry and Chemical Technology and Department of Applied Food Science and Nutrition for letting me work in the laboratory.

An honorable mention goes to my husband, my mother and my daughter for their immense sacrifice, patience, understanding and support in completing this thesis.

Last but not least, I express my deepest sense of gratitude to my beloved family members and my friends for their blessings and encouragement.

The Author June 2020

DEDICATION

DEDICATED TO MY BELOVED FAMILY AND RESPECTED TEACHERS

Table of contents

Authorization	i
Acknowledgements	iii
List of Tables	vii
List of Figures	viii
List of Abbreviations	ix
Abstract	xi
Chapter-1: Introduction	1
1.1. Objectives of this study:	4
Chapter-2: Review of Literature	5
2.1. History of early pesticide use	5
2.2. History of organic pesticides: Organochlorines	6
2.3. Use of Organophosphorus pesticides	9
2.3.1. The mode of action of Organophosphorus pesticides	9
2.3.2. Health effects of Organophosphorus pesticides	10
2.4. Chlorpyrifos- An organophosphate pesticide	10
2.4.1 Mode of action of CPS and its toxicity	11
2.4.2. Chlorpyrifos in surface water	13
2.5. Carbamate Pesticides	14
2.5.1. The mode of action of Carbamate pesticides and its toxicity	15
2.6. Carbaryl- an N-methyl carbamate pesticide	15
2.6.1. Mode of action of carbaryl and its toxicity	16
2.6.2. Carbaryl in surface water	18
2.7. Pesticide contamination in water bodies	18
2.7.1. Origin of pesticide entry into water bodies	19
2.7.2. Factors that increase pesticide movement toward water	20
2.7.3. Organochlorine, organophosphorus and carbamate pesticides in water	22
2.8. Analysis of pesticides using Gas Chromatography-Mass Spectrometry (GC-	- MS) 23
2.8.1. Pesticide analysis using GC and GCMS	25
2.9. Removal of pesticides from surface water and ground water	25
2.9.1. Effect of UV-visible light in the concentration of chlorpyrifos and carba pesticides	r yl 26
- Chapter-3: Materials and methods	28
- 3.1. Study area and period	28
3.2. Collection of surface water sample	28
*	

3.3. Reagents and standards	29
3.4. Surface water sampling procedure	29
3.5. Storage of water samples	30
3.6. Pretreatment of the water samples	30
3.7. Extraction of pesticide carbaryl and chlorpyrifos from the water samples	30
3.8. Preparation of standard solution and calibration curve of carbaryl and chlorpyrifos	30
3.9. Analysis of chlorpyrifos and carbaryl using GCMS	31
3.10. Exposure of water samples to sodium light using polarimeter	31
3.11. Data analysis	32
Chapter-4: Results	33
4.1. Concentration of carbaryl in water samples	33
4.2. Effect of photo-treatment on the concentration of carbaryl in water samples	34
4.3. Concentration of chlorpyrifos in water samples	36
Chapter-5: Discussions	37
Chapter-6: Conclusion	40
Chapter-7: Recommendations	41
References	42
Appendix A: Experimental Data 1	50
Appendix A: Experimental Data 2	63
Appendix A: Experimental Data 3	76
Appendix B: Photo gallery	82
Brief Biography	86

List of Tables

Table 1.	Crops and Target pests on which Chlorpyrifos acts upon	12
Table 2	List of registered carbaryl pesticides available in Bangladesh	17
Table 3.	Detection of carbaryl in U.S. surface waters	22
Table 4.	Sample number and location	29
Table 5.	Carbaryl in twelve surface water samples from Chattogram	33
Table 6.	Effect of photo-treatment on the concentration of carbaryl in water samples	35

List of Figures

Figure 1.	Biomagnification of DDT in an estuarine ecosystem	7
Figure 2.	Chemical structures of some organophosphate and carbamate pesticides	8
Figure 3.	Chemical structure of Chlorpyrifos	11
Figure 4.	Chemical structure of some Carbamate compounds	14
Figure 5.	Chemical structure of Carbaryl	16
Figure 6.	Pathways of a pesticide applied to a crop and how it is contaminating the water bodies	20
Figure 7.	Pesticide contamination in water	21
Figure 8.	Schematic diagram of GCMS	25
Figure 9.	Structure of 1-naphthol and 1,4-naphthoquinone	27
Figure 10.	Concentration of carbaryl pesticide in 12 surface water samples in Chattogram	34
Figure 11.	Concentration of carbaryl pesticide in 12 surface water samples before and after phototreatment	36

List of Abbreviations

Abbreviation	Elaboration		
ACh	Acetylcholine		
AChE	Acetylcholinesterase		
BARI	Bangladesh Agricultural Research Institute		
BCPA	Bangladesh Crop Protection Association		
BPH	Brown planthopper		
Ch	Choline		
CNS	Central Nervous System		
CPS	Chlorpyrifos		
CWA	Clean Water Act		
DDD	Dichlorodiphenyldichloroethane		
DDE	Dichlorodiphenyldichloroethylene		
DDT	Dichlorodiphenyltrichloroethane		
DETP	Diethyl thiophosphate		
EPA	Environmental Protection Agency		
EEC	European Economic Commission		
EU	European Union		
GC	Gas Chromatography		
GC-ECD	Gas Chromatography Electron Capture Detector		
GCMS	Gas Chromatography Mass Spectrometry		
GmbH	Gesellschaft mit beschränkter Haftung		
HPLC	High Performance Liquid Chromatography		
MRL	Maximum Residue Level		
MS	Mass Spectrometer		
NASS	National Agricultural Statistics Service		
NMFS	National Marine Fisheries Service		
OPE	Organophosphate		
ppb	parts per billion		

parts per million
parts per trillion
Trichloropyridinol
Ultraviolet
World Health Organization

Abstract

Organic pesticides applied to agricultural lands and the wash water of fruits and vegetables have strong capacity to contaminate surface water resources. Regular use of contaminated ground and surface water make the natural attenuation of these pesticides more complex and people are directly affecting through use and consumption of water containing higher level of toxic pesticides. This research aimed to detect the concentration of chlorpyrifos and carbaryl, pesticides belonged to the organophosphate and carbamate pesticide groups respectively, in surface water sources collected from different locations of Chattogram Metropolitan Area and observe photometric effects on their concentration by exposing the water samples to sodium light. Gas Chromatography Mass Spectrometry (GCMS) technique was used to detect and measure the concentration of chlorpyrifos and carbaryl pesticides in the treated water samples. 08 out of 12 water samples contained carbaryl ranging from 61.11 ppb to 216.1 ppb, which are above the WHO guideline value. Only 04 water samples contained carbaryl below the WHO guideline value which is still alarming. Chlorpyrifos was not detected in any of the water samples. Disc polarimeter with 589.44 nm wavelength was used as a source of light to observe whether exposure to specific light intensity has any effect on the concentration of the pesticides. After 10 minutes exposure to the 589.44 nm wavelength light, on an average, 95.35% of the carbaryl contents were removed from every water sample contaminated with carbaryl. The lowest percentage removal of carbaryl from water sample was 87.92% while the highest carbaryl removal percentage from water sample was 98.40%. Specific regulation guidelines must be introduced to limit the use of carbaryl in Bangladesh to assure safe water for people.

Keywords: Organophosphate, carbamate, chlorpyrifos, carbaryl, surface water, GCMS, photo-treatment

Chapter-1: Introduction

Any material that is applied to plants, harvested crops, water, soil, structures, clothing and furnishings, or animals so as to draw in, repel, kill or regulate or to interrupt the expansion and reproduction of pests, or to regulate the growth of plants, is known as a pesticide (Randall *et al.*, 2014)). Pesticides can be applied directly or sprayed over the fields of crops. Therefore, they are easily released to the environment, especially in water (Bagchi *et al.*, 2009). In pest management programs, pesticides often play a key role. Sometimes for a given pest, application of pesticide may be the only known control method. There are many pest-control options such as, biological, mechanical, cultural, regulatory control of pests. But the major benefits associated with the use of pesticides are their effectiveness, the speed and ease of controlling pests, and their comparative reasonable cost (Randall *et al.*, 2014).

Classification of pesticides can be done based on their chemical structures or their target organisms or physical state. Based on chemical structure, pesticides are classified into organic, inorganic, synthetic, or biological pesticide. Based on target organisms, pesticides are divided into different types such as herbicides, insecticides, fungicides, rodenticides. Pesticides such as organochlorines, organophosphates, and carbamates fall under the prominent insecticide families. DDT, being one of the organochlorine pesticides, have varying degree of toxicities. But due to their persistence and potential to bioaccumulate, DDT and many other organochlorine pesticides have been phased out already. Organochlorines were largely replaced by organophosphate (e.g., chlorpyrifos) and carbamates (e.g., carbaryl, carbofuran). Carbamates, being less toxic to vertebrates, have replaced the more toxic organophosphorus pesticides in many cases (Kamrin, 1997).

Organophosphate (OPE) are a group of organic compounds derived from phosphate esters and are used widely as insecticides, herbicides, nerve agents and flame retardants (Van der Veen *et al.*, 2012). Commonly used organophosphate pesticides are parathion, malathion, methyl parathion, chlorpyrifos (Registered pesticide list, BCPA).

Carbamate is a group of organic compounds derived from carbamic acid (NH_2COOH). The carbamate ester functional group is responsible for its activity as a pesticide. The most commonly used carbamate pesticides are carbaryl, carbofuran, adicarb, ethienocarb, fenobucarb, oxamyl, and methomyl (Fukuto, 1990).

Both organophosphorus and carbamate insecticides are toxic to insects and mammals. The toxicity of insecticidally active organophosphate and carbamate esters to animals is attributed to their ability to inhibit acetylcholinesterase (AChE), which is a class of enzymes that catalyzes the hydrolysis of the neurotransmitting agent acetylcholine (ACh). Although organophosphate pesticide inhibits AChE irreversibly while carbamate pesticide inhibits the enzyme reversibly, which makes the former pesticide more toxic to insects and mammals (Fukuto,1990).

The enzyme AChE catalyzes the breakdown of acetylcholine (Ach) into choline (Ch) and acetic acid (A), thus reducing the concentration of ACh in the synaptic junction. AChE is a regulating agent of nervous transmission. When an organophosphorus or carbamate ester pesticide inactivates AChE enzyme present in the target insect group's brain, the enzyme is no longer able to hydrolyze ACh; the concentration of ACh in the synaptic junction remains high, and continuous stimulation of the muscle or nerve fiber occurs, resulting eventually in exhaustion and tetany and ultimately kills the insect (Fukuto,1990).

Chlorpyrifos (CPS) is an organophosphate pesticide, IUPAC name- O, O-Diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate, chemical formula- C₉H₁₁Cl₃NO₃PS, a colorless crystal, used on crops, animals, and buildings, and for other places, to kill different types of pests, which includes insects and worms. Nervous systems of insects are affected by the pesticide. It inhibits the acetylcholinesterase enzyme of the nervous system (Muller and Franz, 2000). Chlorpyrifos is widely used in crops like corn, cotton, almonds, and fruit trees, such as bananas, oranges and apples (NASS Agricultural Chemical Database, 2011). In Bangladesh, Chlorpyrifos is regularly being used in the fields of tea, cotton, potato, rice, sugarcane to control pests e.g., Stemborer, Hispa, Termite, Aphid, Cutworm and BPH (Registered pesticide list, BCPA). According to WHO, chlorpyrifos is moderately toxic to humans based on its acute toxicity. Exposure to CPS beyond recommended levels may bring autoimmune disorders, neurological effects and persistent developmental disorders (WHO, 2010; Israel, 2012).

Carbaryl, IUPAC name- 1-naphthyl methylcarbamate, chemical formula- $C_{12}H_{11}NO_{2}$, a colorless crystalline solid, is an insecticide in the carbamate family, used for the control of structural and agricultural pests. It is also used as a molluscicide (Robert, 2002). In the United States, carbaryl is still among the most commonly applied pesticides for many types of grain crops, fruits and vegetables, cut flowers, turf, nursery and ornamentals, green houses, oyster beds and golf courses. Apart from agricultural sector, carbaryl is also used on gardens, ornamentals, residential sites, and turf grass. Carbaryl continues to be used in Canada, Australia, the United States, and developing countries although it has been phased out in the European Union (Koshlukova et al., 2014). In Bangladesh, carbaryl (trade name- Sevin), is used under different brand names in different crops and fruits such as jute, rice, mango and tea to control pests such as Leaf roller, Case worm, Thrips, Hispa, Rice bug, Leaf eating caterpillar, BPH, Hoppers (Registered pesticide list, BCPA). Exposure to carbaryl occurs through inhaling vapors, ingesting residues in food, and skin contact. Carbaryl is also used as a veterinary drug and as an active ingredient in different lotion and shampoo to treat head and pubic lice infection (Jolley et al., 1991). In food samples and in surface water samples carbaryl has been detected at low levels (EPA, 1984). Acute occupational carbaryl exposure of humans has been linked to cause cholinesterase inhibition, due to which the function of central nervous system (CNS) is impaired. This damage to the nervous system results in nausea, vomiting, blurred vision, bronchoconstriction, convulsions, and respiratory failure (Sittig, 1985).

Just like how the majority of the aquatic and terrestrial life forms are sensitive to the variation of the quality of the fresh water supply, human beings are no different. The mortality of aquatic life is highly affected by the changes in properties of fresh water quality. In addition, the organisms who live in the contaminated water and the organisms who drink water from contaminated source are in great danger.

The dynamics of both natural weathering processes and anthropogenic activities (pesticide residue, pharmaceutical and different toxic chemical residue) can have a significant impact on water quality. For the transport and subsequent contamination of water bodies, two mechanisms are primarily responsible: diffusion and advection. The property of molecules to move from high concentration zones to low concentration zones is diffusion while the movement of water due to gravity or in response to pressure forces is advection. To put it simply into words, let's see what will happen if a barrel of pesticide is dumped into a water body. The process of diffusion will cause the chemical to move away from its initial location to be spread throughout the water body. Also forces of advection such as waves and currents will move the chemicals in the direction of the water flow. These two processes will ultimately cause a relatively

uniform distribution of pesticide concentration throughout the water body (Artiola *et al.*, 2004).

Most pesticides are organic compounds. They are often applied in much smaller quantities than fertilizers in the agricultural systems. However, synthetic pesticides may have deleterious effects at very low concentrations as they are designed to be very toxic to plants and pests. Although most pesticides are solids, to facilitate their handling and application they are usually dissolved in water or oil. The chemical structure controls the action and extent of usage of the organic pesticides. The fate and transport, environmental persistence, mobility, water solubility and toxicity of organic pesticides depend on their chemical structure (Brusseau *et al.*, 2004).

Results of a recent study indicate some pond water samples contaminated by organochlorine and carbamate pesticide (carbaryl and carofuran) (Bagchi *et al.*, 2009). Slight contamination of some of the water samples, collected from Meherpur region, was reported with residues of diazinon, chlorpyriphos (organophosphorus insecticide) and carbofuran (carbamate insecticide) (Uddin *et al.*, 2013). Another study indicated the presence of organophosphorus (Malathion) pesticide in surface water samples collected from Rangpur district using High Performance Liquid Chromatography (HPLC) while organochlorine pesticides were absent in all of the collected water samples (Ara *et al.*, 2014). The results of these study conducted in Bangladesh indicate that the presence of organic pesticide in surface water samples is becoming an issue of great concern day by day.

1.1. Objectives of this study:

- I. To detect the presence of chlorpyrifos and carbaryl pesticide in surface water sample
- II. To quantify the amount of chlorpyrifos and carbaryl present in the surface water sample using Gas Chromatography–Mass Spectrometry
- III. To measure the effect of photo-treatment on the concentration of the mentioned pesticides in the water sample
- IV. To suggest ways to minimize the pesticide contamination of surface water

Chapter-2: Review of Literature

2.1. History of early pesticide use

Human civilizations have tried the most effective and less time-consuming approaches to cultivate and preserve their food resources since ancient times. For example, due to the shielding effect of toxic plants for insect elimination, they have cultivated venomous and nutritious vegetation in the same place. Another initial method for removing pests was the use of elemental sulfur for several millennia. One of the oldest still existing documents 'Ebers papyrus' contain some preparation techniques for the removal of insects from foods. Primitive sulfides were also used in traditional Chinese medicines. The use of 'para-pesticides', such as mercury and arsenic, began around the year 1500 (Abubakar *et al.*, 2020).

Different written documents from ancient Greece and Rome show that for the control of plant diseases, weeds, insects and animal pests, the ancient people used religion, folk magic and different chemical methods. The chemical products used as insecticide were either from easily available animal source or from plant source as there was no chemical industry back then. Different records suggest the use of smoke against mildew and blights. Straw, chaff, hedge clippings, crabs, fish, dung, ox or other animal horn to windward were burnt to spread malodorous smoke throughout the orchard, crop or vineyard. Apart from smoke, various plant extracts like bitter lupin or wild cucumber were also used against insect. To trap crawling insects tar was also used on tree trunks. Salt water or sea water was also used to control weeds. Over 2000 years, 'Pyrethrum daisies' – a type of flower was dried to form Pyrethrum powder to protect stored grains. Inorganic chemicals were very popular as pesticide in ancient times. A mixture of copper sulphate and lime, known as Bordeaux Mixture, is a popular fungicide till this day (Smith *et al.*, 1975; Laura, 2010).

Inorganic chemicals such as sodium chlorate and sulphuric acid or naturally derived organic chemicals were widely used as pesticides up until the start of synthetic pesticide era, 1940 and beyond. Initially these substances were used for the destruction of food reserves during the World War II which later on became a very useful tool for the cultivation of foods in day-to-day life. Although the long-term adverse effects of pesticide usage and exposure to pesticide were highlighted by several scientists repeatedly, the usage of pesticide never seemed to decrease.

2.2. History of organic pesticides: Organochlorines

To control fungal growth and insect, some of the early used organics were by-products of coal gas production or other industrial processes, such as nitrophenols, chlorophenols, creosote, naphthalene and petroleum oils. Likewise, from a similar source, ammonium sulphate and sodium arsenate were derived to be used as herbicide. But the high application rates, lack of selectivity and toxicity towards plant species were some of the major drawbacks of these chemicals. Thus, the need for synthetic pesticides became a major discussion (Unsworth, 2010).

In the year 1940, the application of synthetic pesticides increased drastically as different organics such as DDT, aldrin, endrin, BHC, dieldrin, parathion, chlordane, captan and 2,4-D got discovered. All of the mentioned synthetic organic pesticides of chlorinated hydrocarbon group were effective and inexpensive and soon became very popular. Dichlorodiphenyltrichloroethane or DDT, the first important synthetic organic pesticidal action of DDT. He also received Nobel Prize in medicine for his discovery in 1948. DDT was very popular for many reasons such as budget friendly, ease of application, low toxicity to mammals, broad spectrum activity, insoluble in water and persistent to the environment in which it was applied to. To control the spread of insect borne diseases like malaria and typhus, DDT became the only solution during the second half of World War II (Muir, 1998).

However, the success story of DDT came to end with the publication of Rachel Carson's 'Silent spring'. Published in 1962, this best-selling book highlighted major sings and warnings about pesticide use. The writer also predicted the unimaginable destruction caused by the uncontrolled and wide-spread use of chlorinated pesticides or in her words- by the 'rain of chemicals'. In her book she linked the death of non-target organisms with the excessive use of chlorinated hydrocarbons (DDT) due to direct toxicity (fish and crabs) or indirect toxicity related to persistence (mammals, birds). DDT is fat soluble and so it can be accumulated in the fatty tissues of an organism exposed to the chemical, a property known as bioaccumulation. DDT content also increase as we go upwards of a food chain, a property known as biomagnification. DDT also damages the reproductive system of animals and due to its persistence, it can be found in the tissues of many marine aquatic animals and in the mammalian milk even though the mentioned animals were examined far away from the source of the

application of DDT (NPIC DDT technical fact sheet, 2000). As it is persistent, organisms can easily take it up from the environment. A study report shows the extent of bioaccumulation and biomagnification of the concentrations of DDT in the estuarine ecosystem which is next to Long Island Sound. The summary of the report is presented in the following figure (Muir, 1998).

Figure 1. Biomagnification of DDT in an estuarine ecosystem

DDT was reported to be carcinogenic and cause disruption in the endocrine and reproductive systems. Experimental studies suggest that DDT and DDE (a breakdown product of DDT) are attributed to be immunotoxic, carcinogenic and neurotoxic to nontarget animals (Turusov *et al.* 2002). Although DDT production and usage is banned worldwide, India, North Korea and China are the only three countries where production of DDT still continues (van den Berg, 2009). The acute and chronic health effects and destructive ecological effects of DDT and other organochlorines ultimately brought the need of alternative pesticides such as organophosphorus and carbamates into discussion.

Figure 2. Chemical structures of some synthetic (a) organochlorine and organophosphate pesticides (Abubakar et al., 2020)

2.3. Use of Organophosphorus pesticides

In 1854, Frenchman Philippe de Clermont first successfully synthesized an ester of phosphoric acid, also known as organophosphate. He described the chemical as a sticky liquid with a peculiar odor and with a burning taste. Later in 1932, Willy Lange, a German chemist and one of his students, Gerde von Krueger shaded light on the toxic properties of organophosphates. Upon inhaling the fumes of phosphoric esters at a very small amount, they faced breathing difficulties, disturbance in consciousness, painful oversensitivity to eyes, dimming of vision and all of these feelings continued for several hours. Thus, they reported this chemical as nerve agent with cholinergic effects due to the presence of ester functional group (Petroianu, 2010).

After the properties of organophosphates were discovered, German chemist Gerhard Schrader started experiments with these chemicals to observe its ability as insecticides. He realized that this could be used as an agent of chemical warfare and so he was appointed as the in-charge of the development of organophosphates as nerve agents by the Nazi government. The government produced a bulk amount of organophosphates but they did not use these nerve agents in World War II as it was intended. Soon after the war, American scientists got the information about the production of organophosphates and they started to produce it in large quantities. Parathion, malathion became popular replacement of organophosphorus compounds became very handy (Hayes, 2000).

2.3.1. The mode of action of Organophosphorus pesticides

There is a synaptic gap between the two nerve cells of the insects and mammals, known as synaptic cleft that prevents direct message or signal transfer from one nerve cells to the other. Acetylcholine, a neurotransmitter, is mediated to bridge this gap. This chemical is released from the presynaptic nerve cells to bridge this gap and to pass information across nerve cells. When the transfer of signals across nerve cells is completed, then the neurotransmitter acetylcholine is converted into inactive forms by an enzyme named acetylcholinesterase. This way the receptors of acetylcholine gets free to transfer the next signal or stimulus. The organophosphorus pesticides disrupt this process of neurotransmission. They act like the neurotransmitter acetylcholine and binds with the enzyme acetylcholinesterase before the enzyme can bind with the usual chemical acetylcholine. Organophosphorus compounds create a complex with the enzyme and so the enzyme is unavailable to convert the acetylcholine into inactive form to terminate the stimulus. The vital process of discharging and transferring the neural signals remain incomplete due to the disturbance created by the pesticide. The nervous system stops working as the message transfer ceases due to the accumulation of the enzyme in the areas of neural signal by the synapses. Overstimulation of nervous system results into the paralysis of respiratory system for mammals and paralysis of nervous system of the insects, ultimately causing death (Satoh *et al.*, 2011).

2.3.2. Health effects of Organophosphorus pesticides

Organophosphorus, being a potent nerve agent, can be absorbed via all routes such as inhalation, ingestion and skin contact. This poisonous chemical has effects on brain development of different organisms as it disrupts the function of neurotransmitter which is key to brain development. Sometimes the metabolites of the organophosphorus pesticides are more toxic than the original pesticides. Parathion, one of the organophosphates, is carcinogenic, according to the United States Environmental Protection Agency The pesticide also has cognitive and behavioral effects on neonates, toddlers or children. A review article showed direct relation of deleterious health effects of children of different ages. Prenatal exposure was assessed in studies and cognitive deficits were found in 7-year-old child, attention deficit problems were found in toddlers and abnormal motor reflexes were found in newborns (Muñoz-Quezada et al., 2013). U.S. Department of Agriculture tested a representative sample of produce and found detectable traces of organophosphates. In frozen blueberries, celery, green beans, peaches, broccoli, and strawberries the amount of organophosphates found were 28%, 20%, 27%, 17%, 8% and 25% respectively (Sarah Klein, 2010). Even at low levels of exposure, these pesticides can be very detrimental to fetuses and young children as their brain development depends on the sequences of biological processes.

2.4. Chlorpyrifos- An organophosphate pesticide

Being an organophosphate, chlorpyrifos (CPS) is used as insecticide, acaricide and miticide. CPS is used on a variety of food and feed crops primarily to control foliage and soil-borne insect pests. Since 1965, CPS has been used in both agricultural and non-

agricultural areas as a pesticide. In terms of total pounds of active ingredient, the largest agricultural market for chlorpyrifos is corn. CPS is also used on soybeans, fruit and nut trees. Application of CPS as pesticide on cranberries, cauliflower, broccoli, Brussels sprouts as well as other row crops is also very common. It has some non-agricultural uses such as on turf, green houses, golf courses, fence posts and utility poles. It is also used as mosquito adulticide (U.S. EPA, 2002).

Figure 3. Chemical structure of Chlorpyrifos (CPS)

Chlorpyrifos was patented by Dow chemical company in 1966 (US patent). CPS has a broad-spectrum insecticidal activity, high efficacy, fast knockdown, flexible application timing and method, easy to handle, moderate mammalian toxicity. It is active on foliar-feeding and soil-dwelling insect pests. It is effective primarily by contact but the efficiency increases if taken through ingestion. On plant foliage, it exhibits short residual activity. Several attempts were made to ban the use of CPS in the United States but all attempts were failed as CPS is one of the most important tools for Integrated Pest Management (Nelson *et al.*, 2016).

2.4.1 Mode of action of CPS and its toxicity

The mechanism of CPS as a pesticide is no different than any other organophosphate pesticide. It kills the insects by affecting the nervous system. It binds with the AChE enzyme on its active site. As a result, the breakdown of Ach is prevented in the synaptic cleft. This causes overstimulation of nerve cells leading to neurotoxicity and eventually death. The mechanism of toxicity of CPS to non-target organisms such as mammals is also similar to the mechanism to target ones. Within minutes to hours after an exposure to CPS, typical signs and symptoms start to develop in humans. Tearing of eyes, increased saliva production, increased sweat production, runny nose, dizziness, nausea and headache are some of the common signs and symptoms after acute exposure to CPS. Weakness or tremors, muscle twitching, abdominal cramps, diarrhea, vomiting, lack of coordination, blurred vision are some signs of progression (Christensen *et al.*, 2009).

Сгор	Target Pests		
Alfalfa	Alfalfa weevil, armyworms, aphids, potato leafhoppers.		
Brassica vegetables	Cabbage maggot, aphids		
Citrus	Scale insects, mealybug, Asian citrus psyllid, rust mite,		
	citrus leaf miner, katydids.		
Corn, Field	European corn borer, Corn rootworm, cutworm, white grub		
Corn, Sweet	corn earworm, armyworms, corn rootworm (larvae and		
	adult), cutworms, seed corn maggot, wireworms		
Cotton	Cotton aphid, Lygus bug, armyworms, pink bollworm		
Grapes	Mealybugs, cutworms, ants		
Mint	mint root borer		
Onions	Onion maggot		
Peanuts	Lesser cornstalk borer, corn rootworms, white mold		
Apples, Pears	San Jose scale, rosy apple aphid, pandemis leafroller,		
	oblique-banded leafroller, climbing cutworms		
Soybeans	Soybean aphid, bean leaf beetle, grasshoppers, spider mites		
Stone Fruits	San Jose scale, peach twig borer, peach twig borer, peach		
	tree borer, lesser peach tree borer, American plum borer		
Sugar Beets	cutworm, wireworm, sugar beet root maggot, armyworms		
Sweet Potatoes	Wireworms, southern corn rootworm, flea beetles		
Tree nuts	San Jose scale, peach twig borer, navel orange worm,		
	codling moth, walnut husk fly, walnut aphid		
Wheat	Aphids, grasshoppers, orange wheat blossom midge		

 Table 1. Crops and Target pests on which Chlorpyrifos acts upon (Nelson et al., 2016)

Chlorpyrifos undergoes rapid hydrolysis to form primary metabolite and other intermediate derivates which are more toxic chemicals compared to the parent chemical CPS. The common primary metabolite of CPS is 3,5,6-trichloropyridinol (TCP). Some intermediate metabolites of CPS are CPS oxon, diethyl thiophosphate (DETP) and 3,5,6-trichloro-2 methoxypyrimidine. CPS is less toxic than TCP and CPS oxon. Excess use and spread of CPS pesticide to crops may cause leaching into water bodies and may contaminate the surface water far away from the source of application (Dar *et al.*, 2019).

2.4.2. Chlorpyrifos in surface water

The Federal Water Pollution Control Act, section 311(b)(2)(A) and the CWA amendments of 1977 and 1978 clearly states that chlorpyrifos in waterways is a hazardous substance. All isomers and hydrates of chlorpyrifos in any solution or mixture are included in this regulation. There is no chlorpyrifos regulatory standard set for drinking water by EPA. Although a drinking water guideline of 2 ug/L (2 ppb) was established by EPA (US, EPA). To protect steelhead and salmon under CWA and ESA, a limit on the use of CPS was recommended by EPA and NMFS (National Marine Fisheries Service) in different water bodies of the United States.

In Argentina, 42% of the 26 surface water samples collected contained a detectable and alarming levels of chlorpyrifos. Most of the water samples were collected from the water bodies near soyabean crop fields (Marino *et al.*, 2005). Wash water of cauliflower, grapes, coriander leaves, brinjal and bitter guard were tested for the presence of chlorpyrifos pesticides in India in a recent study and almost all the samples were tested positive for the presence of the pesticide (Karthikumar *et al.*, 2020).

In Bangladesh, CPS is persistently found at alarming levels in a number of domestic vegetables and surface and groundwater sources (Tanvir *et al.*, 2015). In a study conducted in the coastal area of Bangladesh, the residue of chlorpyriphos was detected in only one pond water sample, from Feni at a concentration of 3.80 microgram per liter. The water samples were analyzed by HPLC (Uddin *et al.*, 2013). Two samples collected from two different pond from Meherpur region, contained residue of CPS at ppm level (Uddin *et al.*, 2013).

2.5. Carbamate Pesticides

The history of discovery and development of carbamate pesticides is very colorful and interesting. During the mid-nineteenth century, to reveal the guilt or innocence of people accused of witchcraft in West Africa oral administration of calabar bean paste was used. Calabar bean paste was rich in carbamate alkaloids. After the forceful ingestion of calabar bean paste if the alleged person died, then the accusation was confirmed. If the person did not die, then he was declared innocent. The West African word for calabar bean is esere. The active carbamate present in the bean was named eserine in the local language while we know it as 'physostigmine'. Apart from this natural carbamate source, there was attempt to synthesize carbamate compounds to develop new insect repellent in the mid to late 1940s. But the insecticidal properties of the newly synthesized carbamate compounds got quick recognition and appreciation (Stephanie, 2005).

Figure 4. Chemical structures of some Carbamate compounds (Hassaan et al., 2020)

Carbamate, thiocarbamate and dithiocarbamate are three main groups of carbamate pesticides. Carbamates are derived from carbamic acid. The carbamate ester functional group is responsible for the insecticidal properties of carbamate compounds. The first synthesized carbamate pesticide was carbaryl, followed by aldicarb. N-methyl-carbamates such as bendiocarb, carbaryl, aldicarb, carbofuran, propoxur, methomyl, oxamyl are powerful insecticides (Gupta, 2014).

2.5.1. The mode of action of Carbamate pesticides and its toxicity

In the brain and neuromuscular junctions in skeletal muscles. the inhibition of acetylcholinesterase (AChE) at synapses are the clinical signs of the toxicity of N-methylcarbamate insecticides. Apart from AChE, carbamate compounds can bind to other receptors, enzymes and proteins. Due to the carbamylation, the activity of AChE is inhibited by carbamates. So, at the nerve endings of all cholinergic nerves acetylcholine (ACh) accumulates and causes an overstimulation of electrical activity. Carbamates interact with the enzyme AChE in the same manner as the natural substrate Ach. But the rates of hydrolysis and reactivation of AChE (decarbamylation) appear to be drastically slower than for the hydrolysis of the acetylated enzyme (Gupta, 2014).

A variety of toxicologic effects on the central nervous system, peripheral nervous system, musculoskeletal, cardiovascular, ocular, immunologic, reproductive, and other body systems are known to be produced by AChE inhibiting carbamates. In addition to these, oxidative stress, apoptosis, endocrine disruption, and carcinogenesis are also reported to be linked with AChE inhibiting carbamates. Some of them are extremely toxic to mammals and birds. High dosage carbamate exposure leads to several symptoms of CNS origin such as tremors, convulsions, incoordination, partial or generalized seizure, mental disturbance, cyanosis and coma. Within a few hours, due to cardiac and respiratory failure, the person might die. Clinical signs of acute poisoning usually resolve within a few hours of exposure. But some symptoms of a neuro-psychological nature appear to persist for a longer period. In general, carbamates are degraded into metabolites of lesser toxicity. In terms of environmental persistence, they are of lesser concern compared to organophosphorus pesticides (Gupta, 2014).

2.6. Carbaryl- an N-methyl carbamate pesticide

1-naphthyl methylcarbamate is commonly sold under the brand name Sevin of Bayer company. In 1958, carbaryl was discovered by Union Carbide and was introduced commercially to be used as an insecticide. Union Carbide pesticide operations was included in the purchase of Aventis Crop Science by Bayer company in 2002. In the US, carbaryl is that the third most used insecticide for commercial agriculture, home gardens, forestry and rangeland protection. It is not concentrated in fatty tissues nor it is secreted in mammalian milk (Robert, 2002). Carbaryl kills both target and non-target organisms which disturbs ecological balance. Malaria carrying mosquitos or other disease-causing insects are killed by the application of carbaryl. But in addition to this,

carbaryl also kills beneficial insects such as honeybees as well as crustaceans (Bond *et al.*, 2016).

Figure 5. Chemical structure of carbaryl

2.6.1. Mode of action of carbaryl and its toxicity

Carbaryl exposure can be through inhalation, ingestion or contact. When insects are exposed to carbaryl, their nervous system is overstimulated. Using the signaling chemical, ACh, nerves transfer signals to other nerves. The enzyme AChE quickly breaks this ACh chemical to resting condition. Carbaryl disrupts the functioning of the enzyme by binding with the enzyme. The affected nerve stimulation becomes continuous resulting into the malfunctioning of the breathing muscles, ultimately causing death. The mechanism of toxicity of carbaryl is no different than the other pesticides of carbamate group (Bond *et al.*, 2016).

Acute toxicity of carbaryl results in cholinergic syndromes from overstimulation of the muscarinic and nicotinic receptors. These include hypersalivation, respiratory distress, miosis, muscular twitches, tremors, ataxia, diarrhea, and vomiting. There are some nonlethal effects. Among them hematological and liver enzyme changes, alterations in brain enzymes and neurotransmitter levels, changes in catecholamine metabolism, renal effects, hypothermia, and body weight decreases are common. Reproductive and developmental toxicity, genotoxicity, immunotoxicity, carcinogenicity are some of the outcomes of chronic exposure to carbaryl pesticides (Koshlukova, 2014).

Table 2. List of registered carbaryl pesticides available in Bangladesh with their tradenames, registration holder company, recommended crops and recommended pests(Registered pesticide list, BCPA)

Trade	Registration holder	Recommended	Recommended pests
name	company	crops	
Sevin 85 SP	Bayer Crop Science Limited	Rice, jute, vegetables,	Leaf eating caterpillar, hoppers,
Vitabryl 85 WP	McDonald Bangladesh (Pvt) Limited	mango	Hispa, rice bugs, leaf
Reflex 85 WP	Bangladesh Agricultural Industries	Rice	ВРН
Coral 85 WP	Agro Continent Bangladesh	Rice	BPH
Acicarb 85 WP	ACI Formulations Limited	Rice, Tea	BPH, Termite
Sarkking 85 WP	SARK Bangladesh	Rice, Jute	Hairy caterpillar, BPH
Kubrayl 85 WP	Asia Trade International	Mango, Rice	BPH, Hopper
Durbin 85 WP	S I Agro International	Jute	Hairy caterpillar
Kalvin 85 WP	King Tech Corporation Bangladesh	Tea, Rice, Jute	Helopeltis, BPH, Hairy caterpillar
Ravin 85 WP	Sea Trade Fertilizer Limited	Jute, Rice	Hairy caterpillar, BPH
Aristoryl 85 WP	A M Traders	Tea	Helopeltis

2.6.2. Carbaryl in surface water

A significant number of water samples collected from different sources of a cotton growing area in Southern Malawi, were contaminated with carbaryl residues beyond the Maximum Residue Level (MRL). The concentration of carbaryl in surface water samples were recorded to be ranging from 0.083 mg/L to 0.254 mg/L during rainy seasons which were above the recommended limits. The concentration of carbaryl in ground water samples were ranging from 0.165 mg/L to 0.492 mg/L which were also above recommended limits. Concentration of carbaryl were recorded to be higher during the rainy season than the dry season. This coincides with heavy fertilizer and insecticide application as opposed to the dry season. The WHO MRL of carbaryl in water is 0.05 mg/L (Kanyika-Mbewe *et al.*, 2020).

Carbaryl was detected in the surface water sample of the coastal region of Bangladesh in a study. Two water samples collected from two ponds, one from Nobipur and another one from Senbag upazila of Noakhali district tested positive for the pesticide. The concentration level of Carbaryl was 1.32μ g/L in Nobipur sample and 6.40μ g/L in Senbag sample (Uddin *et al.*, 2013). Pesticides of carbamate origin are rapidly taken up by plants from soil and water through the roots. Then they are translocated mainly into the leaves and they sue to chemical degradation, metabolites are found in the tissues of plants. In water, the carbamate pesticides are degraded by microbial decomposition, hydrolysis and photolysis (Thapar *et al.*, 1995).

2.7. Pesticide contamination in water bodies

To improve crop productivity and yield, the use of pesticides is very helpful for the agricultural sector. But the indiscriminate use of pesticides comes with negative consequences. Environmental pollution, especially water pollution caused by pesticide residue are major concerns. Water pollution simply means the presence of chemicals that are not suitable or desirable to be in water bodies in the first place. It makes the water contaminated and also unsuitable for use. Pesticides applied to the land areas may be flushed away by wind or rainfall into the water bodies, making it contaminated. These events alter the physicochemical and biological properties of water and make it toxic and unsuitable. Contamination of water due to the presence of pesticides, disturbs the ecosystem as it affects the living organisms that are dependent on the water bodies.

Any body of water found on the surface above the ground is known as surface water. It includes the saltwater in the ocean as well as the freshwater sources. Rivers, streams, lakes, wetlands, ponds, reservoirs, and creeks are some sources of freshwater. Water runoff and precipitation of water involved in the water cycle are the source of the water in the surface water bodies. While the evaporation of water from the surface of the water bodies and the seepage of water into the ground cause the loss of water from the surface water bodies. Water cycle connects the surface water and ground water supplies. Groundwater can resurface on land to supply surface water. Seepage of surface water into the ground feeds the ground water reservoir.

Surface water is easily accessible by humans for regular use compared to ground water. It is used for drinking, irrigation and for many other purposes. It is also important as many habitats and aquatic life depends on this source of water. Monitoring the earth's surface water is very important. The flow rates of streams and the tracking of vegetation around surface water bodies can be monitored by surface measurements and satellite imagery. Flow rates of streams helps to determine the impact on the availability of surface water due to human activities and climate change. On the other hand, increased surface runoff is caused by the loss of vegetation near the surface water bodies resulting in floods.

The pollution of water can be due to direct application of pesticides or due to indirect contact. To control aquatic plants direct application of pesticides into the water bodies is seen. On the other hand, due to the air flow or surface water runoff, indirect pollution of surface water bodies is seen. Pesticide seepage through soil is the major reason behind groundwater pollution since DDT era. Widespread use of the pesticides in agricultural and non-agricultural lands made the water pollution due to pesticides more of a common issue worldwide. Either the pesticide itself or the degraded form or pesticide residue is causing the water pollution (Sullivan, 2005).

2.7.1. Origin of pesticide entry into water bodies

Entrance of pesticides into water resources could be due to point sources or diffuse sources. A point source of water pollution due to pesticide can be explained as a single restricted source of pesticide that is the only source from which the water resources are being affected. The diffuse sources of pesticide contamination in water are spray drift, surface runoff and leaching. If pesticide is sprayed to any agricultural field which is very near to surface water bodies, spray drift may occur. Instead of infiltrating on the soil, due to excessive rainfall or any other reason, the overflow of water may cause water pollution as waterflow carries away the pesticides from one place to another. This phenomenon is known as surface water runoff. Leaching may contaminate the groundwater sources directly or may contaminate the surface water laterally as well. Organic pesticides are soluble to water to some extent. If a pesticide is more water soluble than soil, leaching into water bodies will contaminate the water resources (Srivastava *et al.*, 2019).

Figure 6. Pathways of a pesticide applied to a crop and how it is contaminating the water bodies (Srivastava *et al.*, 2019)

2.7.2. Factors that increase pesticide movement toward water

Pesticides, when reaches to the soil, may be absorbed by the plant or destroyed by the degradation process. If not the case, it may be absorbed to the soil particles or leaching may occur through the soil. The fate of pesticide depends on several factors such as application method of pesticide, the properties of soil, the conditions of the application site and most importantly the cumulative effects of pesticide. The immigration of pesticides through the soil onto the water is controlled by the absorptivity of pesticides, solubility, volatility and degradation rate. If the absorptivity of pesticides is strong, it does not affect the water bodies that much. But if the absorptivity of pesticide by the soil is weak, then it leaches into the water resources leaving the soil, contaminating the water. Solubility is another important parameter as a pesticide which is more soluble in

water will be easily carried away by the waterflow compared to a less soluble one. Volatility of an organic pesticide also controls its leaching potential as a highly volatile pesticide will transfer into the air instead of water thus leaching into the water will be reduced for that pesticide. Pesticide is degraded by hydrolysis, photolysis or microbial degradation. Some pesticides react with water as in hydrolysis and produce harmless or more harmful chemicals. Photolysis causes the breakdown of pesticides into simpler version due to the action of light. Soil bacteria and fungi also help in the degradation of pesticides near the root zone of a plant. If a pesticide takes less time to degrade in any process, it is less likely to cause water pollution by leaching. On the other hand, if the pesticide is persistent and takes more time to degrade, it can be potential source of pesticide contamination in water. Although degradation of pesticides sometimes creates more disturbing and toxic chemicals and they cause serious water pollution (Khalid, 2019).

Figure 7. Pesticide contamination in water (Source: agriculture.wy.gov/pesticide/)

2.7.3. Organochlorine, organophosphorus and carbamate pesticides in water

Different studies conducted all over the world show the presence of organochlorine, organophosphorus and carbamate pesticides is surface water and groundwater samples. Despite the banning of many organochlorine pesticides, the presence of those pesticides in water samples till this date is very alarming.

Carbaryl is moderately soluble in water. The solubility of carbaryl in water increases with the increase of temperature. In 42 states, carbaryl and its residue was detected in surface water samples near agricultural and non-agricultural lands. Although the concentration of carbaryl was higher near agricultural lands compared to other types of lands. Carbaryl is detected in water in microgram per liter or ppb concentration.

State	Type of land use	Surface water	Concentration
		detections (no.)	range (ppb)
Alabama	Urban	61	0.002–0.422
	Agriculture	19	
	Mixed	41	
California	Urban	166	0.0005–5.20
	Agriculture	251	
	Mixed	432	
Florida	Urban	39	0.003–0.441
	Agriculture	21	
	Mixed	39	
Washington	Urban	46	0.002–0.267
	Agriculture	267	
	Mixed	106	
Texas	Urban	164	0.002–2.0
	Agriculture	13	
	Mixed	138	

Table 3. Detection of carbaryl in U.S. surface waters (Whitacre, 2008).

In Egypt, the Nile River water samples were contaminated with different types of pesticides. In the studied area, organochlorine pesticides such as endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin were found in the river water samples. Also, organophosphorus pesticides namely chlorpyrifos, triazophos, diazinon and carbamate pesticide carbofuran were also detected in the Nile water samples. 60% of the water samples were contaminated with pesticides according to the study. The most detected pesticide was Chlorpyrifos. The pesticides were also detected in the aquatic fish samples from the Nile River. (Shalaby *et al.*, 2018).

In Savar and Dhamrai Upazilas in Bangladesh, water samples collected from both paddy and vegetable fields were contaminated by several organophosphorus and carbamate pesticides. Organophosphorus pesticide- Malathion and diazinon, carbamate pesticide- carbaryl and carbofuran were detected in the water samples while chlorpyrifos was not detected in any of the water samples (Chowdhury *et al.*, 2012). In pond water samples collected from Feni and Meherpur region, chlorpyrifos pesticide was detected. Carbaryl was also detected in pond water samples collected from Nobipur and Senbag Upazilla (Uddin *et al.*, 2013). Pond water samples collected from different locations of Bangladesh were analyzed to quantify the levels of pesticide residues and DDD, DDE, DDT, heptachlor (organochlorines), carbaryl, carbofuran (carbamate pesticides) were detected in different pond water samples in this study (Bagchi *et al.*, 2009).

2.8. Analysis of pesticides using Gas Chromatography-Mass Spectrometry (GC-MS)

GCMS is an analytical method which has a broad range of applications covering many scientific disciplines. In environmental science subjects, GC-MS is commonly used to quantify the levels of organic contaminants. GCMS is highly specific to identify sample even of small volume. This is why GCMS is widely used in forensic analysis. The features of gas-chromatography and mass spectrometry are combined in GCMS to spot different substances within a test sample. This method gives more specific and accurate results compared to other chromatographic techniques available.

Gas chromatography has a mobile phase and a stationary phase to separate different molecules from a sample for identification. The mobile phase of GC contains a carrier gas, usually helium, nitrogen or hydrogen. A microscopic layer of liquid or polymer is used as a stationary phase. This microscopic layer is on an inert solid support inside a column. A column is usually a glass or metal capillary tubing. Within the column the gaseous sample being analyzed interacts with the stationary phase. As a result of which each constituent in the mobile phase gets exposed to the stationary phase. The dimension and properties of the column plays a very important role in the separation process. Each constituent in the mobile phase will travel through the length of the column and will be retained by the stationary phase and then elute from the column at different times, known as the retention time.

The mass spectrometer is composed of three parts- an ion source, mass analyzer and a detector. The sample is ionized by the bombardment of electrons. As a result of which the sample molecules become charged. The ionized charged molecules may become fragmented or non-fragmented. These molecules are separated based on their mass to charge ratio by subjecting them to an electric or magnetic field. The charged molecules are deflected and their deflected path is captured by a detector and then calculated. The signal intensity of detected ions makes the resulted spectrum. The signal intensity is the function of the mass to charge ratio of the charged ions. The masses of fragments or non-fragmented molecules are determined and the chemical structures are also elucidated.

So, in the GC portion of the GCMS, the injected sample is swept by the carrier gas flow though the column and the motion are inhibited by the adsorption of molecules into the stationary phase and so the molecules are separated based on their different retention times. This allows the MS portion of the GCMS, to capture the molecules to ionize and to detect and measure the deflected path of the ionized molecules separately based on their mass to charge ratio. Results are displayed as spectra. The spectra are of the signal intensity of detected ions as a function of the mass-to-charge ratio. Identification of the atoms or non-fragmented molecules in the sample is done by correlating known masses of an entire molecule to the identified masses. The fragmented molecules are identified through a characteristic fragmentation pattern. GC and MS together allow more accurate identification of molecules present in the sample (Sparkman *et al.*, 2011).

Figure 8. Schematic diagram of GCMS (Source: Wikipedia)

2.8.1. Pesticide analysis using GC and GCMS

Different studies were conducted in different places to detect and measure the concentration of pesticides using GC alone or using the GCMS. In a study conducted in India, GC was used to analyze organophosphorus and organochlorine pesticide concentration in fish samples collected from Ganga River (Wasim et al., 2009). GC was also used to analyze organochlorine, organophosphorus, and carbamate pesticides in fish samples collected from the Nile River, Egypt (Shalaby et al., 2018). GC-ECD was used to analyze organochlorine and organophosphorus pesticides in surface and ground water samples in a study conducted in Kanpur, Uttar Pradesh, India (Sankararamakrishnan et al., 2005). Using gas chromatography-tandem mass spectrometry, carbofuran and carbaryl was determined in human blood plasma samples in a study conducted in Greece (Petropoulou et al., 2006). Chlorpyrifos was also detected using GC-MS in ground water samples, surface water samples and drinking water samples in a study conducted in Madrid, Spain (Mauriz et al., 2006). Using GC, Chlorpyrifos was detected in surface and ground water samples from Naushahro Feroze district, Pakistan (Arain et al., 2018). GC-MS was also used to detect residues of nineteen pesticides in fresh vegetable samples collected from different markets of Dhaka city, Bangladesh (Chowdhury et al., 2013).

2.9. Removal of pesticides from surface water and ground water

Removal or degradation of organic pesticides from water bodies largely depends on their chemical structure. Two common ways by which the parent organic pesticides are degraded to form less or more toxic compounds are hydrolysis and photolysis. Another method in nature to dissipate the parent organic compound is microbial degradation which depends on the bioavailability of the pesticide compound. Change in temperature and in pH values also have major effect in pesticide concentration. Chlorpyrifos concentration reduced drastically in water samples at temperature 40 degrees Celsius compared to 22 degrees Celsius according to the study. Also, in alkaline pH (pH 8) the breakdown of chlorpyrifos was notable than acidic pH (pH 6) (Marouane *et al.*, 2015). Hydrolysis of carbaryl in water was studied by Rajagopal et al. in 1984. According to them, at alkaline condition with pH 8 and at temperature 20 degrees Celsius, there is a 50 percent reduction in the carbaryl concentration in water in four days due to hydrolysis of carbaryl to produce a major degradation product namely 1-napthol (Rajagopal *et al.*, 1984). To reduce the pesticide contents from surface water samples different physical, biological and chemical treatment methods are used. A good result is seen in the reduction of organic pesticide amount by photochemical processes. The presence of titanium dioxide or different transitional metal oxides as catalysts, according to different studies, improves the result (Kundu *et al.*, 2005).

2.9.1. Effect of UV-visible light in the concentration of chlorpyrifos and carbaryl pesticides

Degradation of pesticides due to the exposure to different intensity of light largely depends on the duration of light exposure and the type of pesticide. Chlorpyrifos was successfully reduced from different water samples using natural sunlight. Exposure of water samples to sunlight directly for 6 hours every day till day 12 resulted in a notable degradation of the pesticide chlorpyrifos. The study highlighted the significant relation of sunlight and organic pesticide content in water bodies. (Chowdhury *et al.* 2013). Another study showed that the use of titanium dioxide with UV light exposure to water samples increases the efficiency of chlorpyrifos removal from the water samples. And treating water with UV light gave more positive result compared to the use of visible light or sunlight treatment (Gafar, 2010). In Morocco, water samples contaminated with chlorpyrifos were subjected to UV light exposure using UV photometer in presence of different metal catalysts in a study. The concentration of chlorpyrifos reduced notably (Marouane *et al.*, 2015).

According to Brahmia and Richard, carbaryl can be photolyzed to form naphthoquinone or hydroxynaphthoquinone products such as 1,2-naphthoquione, 1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, and 7-hydroxy-1,4-naphthoquinone (Brahmia and Richard, 2003). The concentration of carbaryl in water drops after phototreatment as

carbaryl is degraded into simpler compounds such as 1-naphthol and 1,4-naphthoquinone due to photolysis.

Figure 9. Structure of 1-naphthol and 1,4-naphthoquinone

Effect of photolytic reaction to remove carbaryl from water samples was also studied using UV lamp. UV light of 250 nm wavelength was used in the experiment for different duration of time to see the comparative results of the reduction of carbaryl concentration. 1 minute of exposure resulted in 80.27% degradation of carbaryl while 8 minutes of UV light exposure resulted in 100% removal of carbaryl pesticide from the water samples. UV irradiation technique brought a comparatively better result than ultrasound treatment of water samples in the same study (Khoobdel *et al.*, 2010).

Chapter-3: Materials and methods

3.1. Study area and period

The present study 'Contamination of organic pesticides in surface water of Chattogram Metropolitan Area and photometric effects in removing these substances' was conducted from July to December, 2020 at Chattogram Veterinary and Animal Sciences University. The surface water samples were collected from different areas of the Chattogram Metropolitan Area. The collected surface water samples were transported to the laboratory under the Department of Applied Chemistry and Chemical Technology for storage and various experimental procedures were completed in the same laboratory. While the analysis of water samples using GCMS machine was done in the laboratory under the Department of Applied Food Science and Nutrition. The study consists of collection of surface water samples, pretreatment of samples, extraction of pesticides from the water samples, storage of extracted samples, photo treatment of sample extract using polarimeter, and analysis of pesticides using GCMS.

3.2. Collection of surface water sample

Surface water samples were collected from 12 different ponds of 5 different areas of Chattogram. Four samples from Khulshi, 4 samples from Pahartoli, 2 from Kornelhat, 1 from Agrabad and 1 from Boubazar, in total 12 samples were collected.

Table 4.	Sample	number	and	location
----------	--------	--------	-----	----------

Sample no	Sample location
01	Khulshi (BARI pond 1)
02	Khulshi (BARI pond 2)
03	Khulshi (BARI pond 3)
04	Khulshi (Poultry farm)
05	Agrabad (Agrabad deba)
06	Kornel hat (Pond 1)
07	Kornel hat (Pond 2)
08	Kaibalyadham (Dham 1)
09	Kaibalyadham (Dham 2)
10	Pahartali (Pahartali bazar)
11	Pahartali (Kali mandir)
12	Boubazar (Eidgah boubazar)

3.3. Reagents and standards

95% pure HPLC grade n-hexane, purchased from Fisher scientific USA, was used for the extraction of pesticides from water samples. HPLC grade methanol (99.9% pure) was purchased from Fisher scientific USA and was used for the preparation of standard solutions of chlorpyrifos and carbaryl pesticides.

250 mg 98.9% pure carbaryl and 100 mg 99.4% pure chlorpyrifos were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany) for the analysis of these pesticides in water samples using GCMS.

3.4. Surface water sampling procedure

Plastic bottles with tight lid were used to collect water samples from the aforementioned areas. The bottles were thoroughly washed with distilled water before collecting the water samples. Then each bottle was rinsed with the respective surface water sample and then water samples were collected into those bottles. Small volume of water from different corners of the ponds were mixed and collected in the sampling bottles.

3.5. Storage of water samples

The water samples were transported to the laboratory immediately after collection. In the laboratory the water samples were stored in the refrigerator at 4 degrees Celsius temperature until the pretreatment of the water samples for analysis.

3.6. Pretreatment of the water samples

The water samples were filtered using 'Double rings 102 qualitative filter paper of medium speed with 12.5 cm diameter' to clarify the water samples. The process was slow and all the water samples were filtered and stored again in the plastic bottles at 4 degrees Celsius temperature.

3.7. Extraction of pesticide carbaryl and chlorpyrifos from the water samples

Extraction of Carbaryl and chlorpyrifos pesticides from water samples was done by following the 'US EPA standard method 3510C separatory funnel liquid-liquid extraction' guidelines. As an extraction solvent, in this liquid-liquid extraction process, n-hexane was used. Using a graduated measuring cylinder, 100 ml water sample was taken in a separatory funnel. For every 100 ml of water sample, 6 ml of n-hexane was added to the separatory funnel. The mixture was shaken for 1 to 2 minutes with periodic venting. Shaking the contents in the separatory funnel creates excess pressure and so periodic venting was done repeatedly to release the excess pressure. Then the contents of the separatory funnel were allowed to separate for 10 minutes. After 10 minutes the organic layer was separated in the upper layer of the separatory funnel. The upper layer was collected and the entire process was repeated. Finally, the organic pesticide extracts were collected in vials with appropriate labeling for further analysis (Arian *et al.*, 2018).

3.8. Preparation of standard solution and calibration curve of carbaryl and chlorpyrifos

Standard solutions of 9 ppb, 18 ppb and 180 ppb carbaryl were prepared from the purchased 250g carbaryl standard from Dr. Ehrenstorfer GmbH (Germany). HPLC grade 99.9% pure methanol was used as solvent for carbaryl. The standards were run in the GCMS and a calibration curve was prepared from GCMS.

Standard solutions of 100 ppb, 200 ppb and 500 ppb chlorpyrifos were prepared from 100g chlorpyrifos standard, purchased from Dr. Ehrenstorfer GmbH (Germany), using HPLC grade 99.9% pure methanol as solvent. The prepared standard solutions were used to prepare the calibration curve of chlorpyrifos.

3.9. Analysis of chlorpyrifos and carbaryl using GCMS

Gas Chromatography-Mass Spectrometry is one of the most precise and accurate methods available for quantitative analysis of organic pesticides. The SCION (SQ) 456-GC from the laboratory under the Department of Applied Food Science and Nutrition was used for the analytical purpose. MSWS8: System Control Software and SCION MS-40 Software were used throughout the analysis. Helium was used as the carrier gas here. Manifold, transfer line and EI temperature were set to 40° C, 250° C and 250° C respectively. The machine is equipped with 8400 autosampler with 10 μ L syringe and a split-splitless injector. For cleaning the GCMS sample source or autosampler, the steps that were followed are: 2 to 3 times pre-injection solvent flush, 2 to 3 times pre-injection solvent flush and lastly cleaning of the solvent source.

Column flow rate was 1.8 ml/min. The column temperature program was as follows: 80° C for 1 min; increase 10° C/min to 240° C; increase temperature up to 265° C and hold for 10 min. The Mass Spectrometer system was operated in the full-scan mode. MS scan time was 200 milliseconds. The MS was operated with a mass range from m/z 50 to 550. By comparing with the retention time of authentic standards and mass spectra of those standards, the chromatographic peaks of analytes were identified.

The analysis of carbaryl and chlorpyrifos pesticides in the water samples was carried out by running standards of carbaryl and chlorpyrifos respectively on Scion 456 GC machine at first. Calibration curves of carbaryl and chlorpyrifos were drawn from the data of standard sample run. After calibration, the prepared samples were taken into vials and were injected to the GCMS. Using linear equation y=mx+C, the concentration of carbaryl and chlorpyrifos in the water samples were measured.

3.10. Exposure of water samples to sodium light using polarimeter

A disk polarimeter, model WXG-4, manufacturer VTSYIQI, China, was used to expose the extracted water samples in visible spectrum of light. The light source of this polarimeter was a sodium lamp with 589.44 nm wavelength. All the extracted labelled water samples that showed a positive result for the presence of pesticides were exposed in sodium light for 10 minutes each to observe the photodegradation of pesticides in water samples. Then the treated water samples were sent to analyze the pesticide contents using the GCMS machine.

3.11. Data analysis

MSWS8: system control software and SCION MS-40 software were used to analyze the data received from the GCMS machine. The final results were analyzed using Microsoft Excel 2016.

Chapter-4: Results

4.1. Concentration of carbaryl in water samples

Twelve surface water samples collected from different regions of Chattogram Metropolitan Area were analyzed for the presence of carbaryl pesticides using GCMS. The location of the collection of water samples were limited to Khulshi, Agrabad, Eidgah boubazar, Kornel hut, Pahartali and Kaibalyadham. Among the samples collected from different regions, all tested positive for the presence of carbaryl in ppb (micrograms per liter) concentration. The results were compared with WHO guideline value of water quality. The lowest concentration of carbaryl was 34.65 ppb, detected in the water sample collected from a pond near Pahartali bazar (sample no 10). While the highest concentration of carbaryl was 216.1 ppb, detected in the water sample collected from a pond near Pahartali kali mandir (sample no 11). The WHO MRL of carbaryl in drinking water is 0.05 mg/L or 50 ppb. Eight out of twelve water samples contained carbaryl above the WHO guideline value.

Sample	Location	Carbaryl
no		concentration
		(ppb)
01	Khulshi (BARI pond 1)	94.92
02	Khulshi (BARI pond 2)	113.7
03	Khulshi (BARI pond 3)	77.28
04	Khulshi (Poultry farm)	87.00
05	Agrabad (Agrabad deba)	106.8
06	Kornel hat (Pond 1)	61.11
07	Kornel hat (Pond 2)	39.61
08	Kaibalyadham (Dham 1)	35.06
09	Kaibalyadham (Dham 2)	36.22
10	Pahartali (Pahartali bazar)	34.65
11	Pahartali (Kali mandir)	216.1
12	Eidgah boubazar	201.6

Table 5. Carbaryl in twelve surface water samples from Chattogram

CONCENTRATION OF CARBARYL IN 12 SURFACE WATER SAMPLES FROM CHATTOGRAM

4.2.Effect of photo-treatment on the concentration of carbaryl in water samples

Each of the twelve surface water samples were treated with 589.44 nm wavelength sodium light using a disk polarimeter. After 10 minutes of light exposure, all the water samples were again analyzed in the GCMS to observe the photometric effects on the pesticide concentration. The concentration of carbaryl in the water samples dropped significantly after the photo-treatment. On an average, 95.35% of the carbaryl contents were removed from the water samples (Table 6).

Sample	Location	Initial	Carbaryl	Percentage (%) removal of
no		Carbaryl	concentration (ppb)	carbaryl from water
		concentration	after photo-treatment	samples by photo-treatment
		(ppb)		
01	Khulshi (BARI pond 1)	94.92	3.755	96.04
02	Khulshi (BARI pond 2)	113.7	5.025	95.58
03	Khulshi (BARI pond 3)	77.28	1.233	98.40
04	Khulshi (Poultry farm)	87.00	1.524	98.25
05	Agrabad (Agrabad deba)	106.8	3.489	96.73
06	Kornel hat (Pond 1)	61.11	7.380	87.92
07	Kornel hat (Pond 2)	39.61	3.032	92.35
08	Kaibalyadham (Dham 1)	35.06	1.978	94.36
09	Kaibalyadham (Dham 2)	36.22	0.820	97.74
10	Pahartali (Pahartali bazar)	34.65	2.169	93.74
11	Pahartali (Kali mandir)	216.1	7.753	96.41
12	Boubazar (Eidgah boubazar)	201.6	6.733	96.66
				Average 95.35

Table 6. Effect of photo-treatment on the concentration of carbaryl in water samples

4.3. Concentration of chlorpyrifos in water samples

The water samples were also analyzed for the presence of chlorpyrifos. Chlorpyrifos was not detected in any of the water samples collected from different regions of Chattogram Metropolitan Area.

Chapter-5: Discussions

The present study was conducted for investigating the presence of organophosphorus and carbamate pesticides, mainly chlorpyrifos and carbaryl respectively, in surface water samples collected from different regions of Chattogram Metropolitan Area and the effect of photo-treatment of those water samples on the concentration of the pesticides.

The presence of organic pesticides in surface water bodies is always a matter of concern. Moreover, increase of textile dyes, organic & inorganic chemicals in wastewater are making the natural water systems more vulnerable. Different studies were conducted all over the world to address this issue. Very few research works had been done so far in this issue in Bangladesh. Unfortunately, there is no data available till this date to address the organic pesticide contamination level of surface water resources in Chattogram Metropolitan Area. In this study, the results show that all the collected water samples were contaminated with a carbamate pesticide namely carbaryl. The WHO maximum residue limit of carbaryl in drinking water is 50 ppb. Eight out of twelve water samples contained carbaryl ranging from 61.11 ppb to 216.1 ppb, which are above the WHO guideline value. Only four water samples contained carbaryl below the WHO guideline value which is still alarming. According to EEC, for drinking water, the total pesticide level should not exceed 0.5 ppb and individual pesticide not greater than 0.1 ppb (EEC Directive 80/778/EEC). All 12 water samples crossed the EEC borderline in the present study.

The sources of the water samples were chosen very carefully. Ponds that are very close to the agricultural farm or that are widely used by public for washing their food items, utensils and many other uses. Some specific sample locations were targeted as in Agrabad deba and Eidgah boubazar boropukur because here people regularly wash their vegetables which could be a source of the pesticides in the water bodies. On the other hand, the presence of carbaryl in water bodies could be due to surface water runoff.

In a study conducted in Southern Malawi, the concentration of carbaryl in surface water samples were recorded to be ranging from 83 ppb to 254 ppb (Kanyika-Mbewe *et al.*, 2020). In 42 states of the United States, carbaryl and its residue was detected in surface water samples near agricultural and non-agricultural lands in ppb concentration (Whitacre, 2008). In Noakhali district, two water samples were reported to contain

carbaryl, one sample contained 1.32 ppb carbaryl and the other one contained 6.40 ppb carbaryl (Uddin *et al.*, 2013). In the present study, the results showed that the lowest carbaryl concentration was 34.65 ppb, detected in the water sample collected from a pond near Pahartali bazar (sample no 10). While the highest concentration of carbaryl was 216.1 ppb, detected in the water sample collected from a pond near Pahartali kali mandir (sample no 11).

Pesticides of carbamate origin such as carbaryl are rapidly taken up by plants from soil and water through the roots. Then they are translocated mainly into the leaves and they sue to chemical degradation, metabolites are found in the tissues of plants. So, washing those plant tissues or food from plant sources that were subjected to carbaryl exposure during cultivation could retain the pesticide and later contaminate the water bodies where they are being washed off (Thapar *et al.*, 1995). Wash water of different vegetables were tested for the presence of organic pesticides in India in a recent study and almost all the samples were tested positive for the presence of pesticide (Karthikumar *et al.*, 2020).

Chlorpyrifos, an organophosphorus pesticide, was not detected in any of the water samples in the present study. In a similar study conducted in Argentina, 42% of the 26 surface water samples collected contained a detectable and alarming levels of chlorpyrifos (Marino *et al.*, 2005). In India, a recent study showed the presence of chlorpyrifos pesticides in the wash water of cauliflower, grapes, coriander leaves, brinjal and bitter guard which clearly shows the importance of testing the water bodies for the presence of this pesticide where vegetables are regularly washed off by general people (Sankar *et al.*, 2020).

In Bangladesh, CPS is persistently found at alarming levels in a number of domestic vegetables and surface and groundwater sources (Tanvir *et al.*, 2015). In a study conducted in the coastal area of Bangladesh, the residue of chlorpyriphos was detected in only one pond water sample, from Feni at a concentration of 3.80 ppb (Uddin *et al.*, 2013). In another study conducted in Meherpur region, two samples collected from two different pond, contained residue of CPS at ppm level (Uddin *et al.*, 2013). In a study conducted in Taragong Thana of Rangpur district in Bangladesh, CPS was not detected in any of surface water samples collected for the study. And the author concluded that may be the farmers in that region do not use that pesticide anymore (Ara *et al.*, 2014).

In the present study, CPS was not detected in any of the surface water samples. The result suggests that may be the farmers in Chattogram metropolitan area do not use CPS as a pesticide or may be the usage is very limited.

According to Thapar, one of the ways by which the carbamate pesticides (carbaryl) in water are degraded is photolysis (Thapar *et al.*, 1995). The effect of photolytic reaction to remove carbaryl from water samples was investigated using UV light of 250 nm wavelength where 1 minute of exposure resulted in 80.27% degradation of carbaryl while 8 minutes of UV light exposure resulted in 100% removal of carbaryl pesticide from the water samples (Khoobdel *et al.*, 2010).

Chlorpyrifos was successfully reduced from different water samples using natural sunlight. Exposure of water samples to sunlight directly for 6 hours every day till day 12 resulted in a notable degradation of the pesticide chlorpyrifos. The study highlighted the significant relation of sunlight and organic pesticide content in water bodies. (Chowdhury *et al.*, 2013). Treating water with UV light gave more positive result compared to the use of visible light or sunlight treatment to remove chlorpyrifos pesticide from water samples (Gafar, 2010).

In the present study, a disk polarimeter with sodium lamp having 589.44 nm wavelength light was used. After 10 minutes exposure to the 589.44 nm wavelength light, on an average, 95.35% of the carbaryl contents were removed from the water samples. The lowest removal percentage of carbaryl in water sample was 87.92% from Kornel hut pond (sample no 6) while the highest carbaryl removal percentage from water samples was 98.40% from Khulshi (sample no 3). Due to photolytic degradation carbaryl might have been broken down into simpler compounds such as 1-naphthol or 1,4-naphthoquinone.

The level of contamination of metropolitan area's surface water by organic pesticides should be less than the rural areas as majority of the animal farms, agricultural farms and lands are in the rural areas. Therefore, the chances of pesticide contamination of surface water resources are higher in the rural areas compared to the metropolitan area. Our study result showed a significant level of organic pesticide contamination of surface water resources collected from Chattogram Metropolitan Area and the chances are high that the level of contamination might be more alarming in the rural areas.

Chapter-6: Conclusion

The results from this study revealed that the surface water sources of Chattogram Metropolitan Area are contaminated with an organic pesticide carbaryl. Eight out of twelve water samples contained carbaryl above the WHO guideline value. All twelve water samples crossed the borderline proposed by EEC for any individual pesticide in drinking water. There was no presence of the organophosphorus pesticide chlorpyrifos in any of the water samples. This study was conducted to observe the effect of sodium light of visible spectrum with 589.44 nm wavelength to reduce the pesticide concentration from the surface water samples. After 10 minutes exposure to sodium light, on an average there was around 95.35% reduction of carbaryl concentration from all of the water samples. The result of this study suggested that treating water with sodium light could reduce the concentration of organic pesticide carbaryl present in water.

Chapter-7: Recommendations

In the present study only two organic pesticides were analyzed with a limited sample size due to budget shortage and also due to the ongoing crisis of COVID-19 pandemic. Analysis of other organophosphorus and carbamate pesticides is suggested, such as carbofuran. Carbofuran was initially included in our study plan but due to different limitations the analysis was not completed. Also, the sample size needs to be increased and a broader sampling area needs to be covered to get the real picture of pesticide contamination. Surface water samples from the rural areas could also be analyzed to observe the level of pesticide contamination.

Further studies need to be carried out to check the effect of changing other parameters of water samples such as changing the pH, temperature, treating the water samples with appropriate catalyst. Also, to see the effect of sodium light of 589.44 nm wavelength, the duration of exposure could be of different ranges. The wavelength of light could also be of different ranges. Further studies are also suggested to observe the seasonal effect on pesticide contamination in surface water bodies.

References

- Ara AG, Haque W, Hasanuzzaman M. 2014. Detection of Organochlorine and Organophosphorus Pesticides Residues in Water Samples of Taragong Thana in Rangpur District in Bangladesh. *Research Journal of Environmental and Earth Sciences*, 6(2), 85–89. doi:10.19026/rjees.6.5745
- Artiola JF. 2004. Environmental Monitoring and Characterization. Monitoring Surface Waters. 141–161. <u>doi:10.1016/b978-012064477-3/50011-4</u>
- Arain M, Brohi K, Channa, A, Brohi R, Mushtaque S, Kumar K, Samuee A. 2018.
 Analysis of Chlorpyrifos Pesticide Residues in Surface Water, Ground Water and Vegetables through Gas Chromatography. *Journal of International Environmental Application and Science*, Vol. 13 (3): 167-173
- Abubakar Y. 2020. Natural Remedies for Pest, Disease and Weed Control. Pesticides, History, and Classification. 29–42. doi:10.1016/B978-0-12-819304-4.00003-8
- Bagchi S, Azad A, Alomgir M, Chowdhury Z, Uddin, Al-Reza S & Rahman A. 2009. Quantitative Analysis of Pesticide Residues in Some Pond Water Samples of Bangladesh. Asian Journal of Water, Environment and Pollution, 6(4), 27-30.
- Brahmia O and Richard C. 2003. Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochem Photobiol Sci 2, 1038–1043. https://doi.org/10.1039/b305376h
- Brusseau ML. 2004. Environmental Monitoring and Characterization. Chemical Contaminants. 299–312. doi:10.1016/b978-012064477-3/50018-7
- Blacker AM. 2010. Hayes' Handbook of Pesticide Toxicology. Toxicological Profile of Carbaryl. 1607–1617. doi:10.1016/B978-0-12-374367-1.00074-4
- Bond C, Cross A, Buhl K, Stone D. 2016. Carbaryl General Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services. Available from: <u>http://npic.orst.edu/factsheets/carbarylgen.html</u>
- Chowdhury MAZ, Banik S, Uddin B, Moniruzzaman M, Karim N, Gan SH. 2013. Organophosphorus and Carbamate Pesticide Residues Detected in Water Samples Collected from Paddy and Vegetable Fields of the Savar and Dhamrai

Upazilas in Bangladesh. *Int. J. Environ. Res. Public Health* **2012**, *9*, 3318-3329. DOI: <u>https://doi.org/10.3390/ijerph9093318</u>

- Chowdhury A, Fakhruddin A, Islam M, et al. Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography-mass spectrometry. Food Control 2013; 34: 457–465.
- Christensen K, Harper B, Luukinen B, Buhl K, Stone D. 2009. Chlorpyrifos technical factsheet. national pesticide information center. Oregon State University Extension Services. Available from: http://www.npic.orst.edu/factsheets/chlorpgen.html. Accessed date: 3rdJanuary2021.
- Das A, Singh J, Yogalakshmi K. 2017. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegrad. 117, 183-189. https://doi.org/10.1016/j.ibiod.2017.01.007.
- Dar MA, Kaushik G, Villarreal-Chiu JF. 2019. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. J Environ Manage. 239, 124-136. <u>https://doi.org/10.1016/j.jenvman.2019.03.048</u>.
- Fukuto TR. 1990. "Mechanism of action of organophosphorus and carbamate insecticides". Environmental Health Perspectives. 87: 245–254. doi:10.1289/ehp.9087245.
- Foong SY, Ling MN, Lam SS, Wanxi P, Felicia L, Bernard LHK, Alstrup AKO, Christian S. 2020. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. Journal of Hazardous Materials, (), 123006–. <u>doi:10.1016/j.jhazmat.2020.123006</u>
- Gafar SM. 2010. Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters. Arabian J. Chem. 3: 127–133.
- Gupta RC. 2014. Encyclopedia of Toxicology. Carbamate Pesticides. 661–664. doi:10.1016/B978-0-12-386454-3.00106-8

- Gunasekara AS, Rubin AL, Goh KS, Spurlock FC, Tjeerdema RS. 2008. Environmental fate and toxicology of carbaryl. Rev Environmental Contamination Toxicology. 196: 95–121.
- Hayes P. 2000. Industry and Ideology: I. G. Farben in the Nazi Era. Cambridge, England: Cambridge University Press.
- Hassaan MA, Ahmed EN. 2020. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. *The Egyptian Journal of Aquatic Research*, 46(3), 207–220. doi:10.1016/j.ejar.2020.08.007
- Henk VDB. 2009. Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease. Environmental Health Perspectives, 117(11), 1656–1663. <u>doi:10.1289/ehp.0900785</u>
- Hossain MS, Fakhruddin ANM, Chowdhury MAZ, Alam MK. 2013. Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight. *Journal of Environmental Chemical Engineering*, 1(3), 270–274. doi:10.1016/j.jece.2013.05.006
- Hübschmann HJ. 2015. Handbook of GC-MS: Fundamentals and Applications (3 ed.). John Wiley & Sons, Incorporated. p. 735.
- Israel B. 2012. "Common Insecticide May Harm Boys' Brains More Than Girls". Scientific American. 21 August 2012.
- Jolley JH, Kennedy JP, Miller AJ. A comparison of two insecticidal shampoos in the treatment of head louse infection. J R Soc Health. 1991. 111(3):90-1. doi:10.1177/146642409111100302. PMID: 1907325.
- Kamrin MA. 1997. Pesticide Profiles: Toxicity, Environmental Impact, and Fate (1st ed.). Boca Raton: CRC. ISBN 978-1566701907. OCLC 35262311
- Kanyika-Mbewe C, Thole B, Makwinja R. *et al.* Monitoring of carbaryl and cypermethrin concentrations in water and soil in Southern Malawi. *Environ Monit Assess* **192**, 595 (2020). <u>https://doi.org/10.1007/s10661-020-08557-y</u>
- Karthikumar S, Lenisha D, Janaki G, Juliana J, Kumar RS, Chengathir SM, Srinivasan G. 2020. Digital image-based quantification of chlorpyrifos in water samples

using a lipase embedded paper-based device. Talanta, 208(), 120408-. doi:10.1016/j.talanta.2019.120408

- Khalid S, Shahid M, Murtaza B, et al. 2019. A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of The Total Environment, 134645. doi:10.1016/j.scitotenv.2019.134645
- Khoobdel M, Shayeghi M, Golsorkhi S, Abtahi M, Vatandoost H, Zeraatii H, & Bazrafkan S. 2010. Effectiveness of ultrasound and ultraviolet irradiation on degradation of carbaryl from aqueous solutions. *Iranian journal of arthropodborne diseases*, 4(1), 47–53.
- Kundu S, Pal A, Dikshit AK. 2005. UV induced degradation of herbicide 2,4-D: kinetics, mechanism and effect of various conditions on the degradation. 44(2), 121–129. doi:10.1016/j.seppur.2004.12.008

Koshlukova SE, Reed NR. 2014. Encyclopedia of Toxicology (Third Edition).

- Laura P.P. 2010. Some Pesticides Permitted in Organic Gardening. Colorado StateUniversityCooperativeExtension.Availablefrom:http://www.oisat.org/downloads/organic.html, accessed on January 2021.
- Marino D & Ronco A. 2005. Cypermethrin and Chlorpyrifos Concentration Levels in Surface Water Bodies of the Pampa Ondulada, Argentina. 75(4), 820–826. doi:10.1007/s00128-005-0824-7_
- Marouane B, El-Hajjaji S, El-Yadini A, Abdelmalek D. 2015. Photolysis of chlorpyrifos in various aqueous solutions. Basic Research Journal of Agricultural Sciences Review (4(8)), 239-245.
- Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ. 2006. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. 561(1-2), 40–47. doi:10.1016/j.aca.2005.12.069
- Muir SP. 1998. History of pesticide use, Human impacts on ecosystem, Course biology 301, Oregon state university
- Muller F. 2000. Agrochemicals: Composition, Production, Toxicology, Applications. Toronto: Wiley-VCH. p. 541. ISBN 978-3-527-29852-5.

- Nelson JE & Schneider LL. 2016. Use and benefits of chlorpyrifos in agriculture. Dow AgroSciences, Chlorpyrifos- North America. Benefits and how it is used. Available from: <u>https://www.chlorpyrifos.com/benefits-and-use/use.html</u>, accessed on January 2021
- NPICDDTtechnicalfactsheet,2000.Availablefrom:http://npic.orst.edu/factsheets/archive/ddttech.pdf, Accessed on January 2021
- Petroianu GA. 2010. Toxicity of phosphor esters: Willy Lange (1900–1976) and Gerda von Krueger (1907–after 1970). College of Medicine, Florida International University, Miami, USA
- Petropoulou SS, Tsarbopoulos A, Siskos PA. 2006. Determination of carbofuran, carbaryl and their main metabolites in plasma samples of agricultural populations using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 385, 1444–1456. https://doi.org/10.1007/s00216-006-0569-0
- Qiao D, Seidler FJ, Padilla S, Slotkin TA. 2002. Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect. 110, 1097-1103. https://doi.org/10.1289/ehp.021101097.
- Rajagopal BS, Brahmaprakash GP, Reddy BR, Singh UD and Sethunathan N. 1984. Effects and persistence of selected carbamate pesticides in soil. Residue Rev., 93: 1-199.
- Randall C, et al. 2014. "Pest Management". National Pesticide Applicator Certification Core Manual (2nd ed.). Washington: National Association of State Departments of Agriculture Research Foundation.
- Robert LM. 2002. "Insect Control" in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. <u>doi:10.1002/14356007.a14_263</u>
- Sankararamakrishnan N, Sharma AJ, Sanghi R. 2005. Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. 31(1), 0–120. <u>doi:10.1016/j.envint.2004.08.001</u>
- Satoh T & Gupta R. 2011. Anticholinesterase Pesticides: Metabolism, Neurotoxicity, and Epidemiology. John Wiley & Sons, Inc

- Shalaby SEM, El-Saadany SS, Abo-Eyta AM, Abdel-Satar AM, Al-Afify ADG, Abd El-Gleel WMM. 2018. Levels of pesticide residues in water, sediment, and fish samples collected from Nile River in Cairo, Egypt. Environmental Forensics, 19(4), 228–238. doi:10.1080/15275922.2018.1519735
- Sittig M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. 2nd ed. Noyes Publications, Park Ridge, NJ.
- Smith AE & Secoy DM. 1975. Forerunners of Pesticides in Classical Greece and Rome. J. Ag. Food Chem. 23 (6) 1050. Available from: <u>http://www.hort.purdue.edu/newcrop/history/lecture18/r_18-1.html</u>
- Sparkman DO, Penton Z, Kitson FG. 2011. Gas Chromatography and Mass Spectrometry: A Practical Guide. Academic Press. ISBN 978-0-08-092015-3.
- Srivastava A, Jangid NK, Srivastava M, & Rawat V. 2019. Pesticides as Water Pollutants. In Wani, K. A., & Mamta, (Ed.), Handbook of Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems (pp. 1-19). IGI Global. http://doi:10.4018/978-1-5225-6111-8.ch001
- Stephanie P. 2005. Encyclopedia of Toxicology (Second Edition), carbamate pesticides, Pages 410-412. Avalaible from: <u>https://doi.org/10.1016/B0-12-369400-0/00178-2</u>
- Sullivan P J. 2005. The Environmental Science of Drinking Water. Water Pollution. 29–87. doi:10.1016/B978-075067876-6/50005-1
- Tanvir E, Afroz R, Chowdhury M, Gan S, Karim N, Islam M, Khalil M. 2015. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Human & Experimental Toxicology, 0960327115614384–. doi:10.1177/0960327115614384
- Teresa MQM, Boris AL, Barr DB, Kyle S, Karen L, Barry RP, Veronica I, Sergio A, Carlos C, Evelyn R, Catalina V. 2013. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. NeuroToxicology, 39(), 158–168. doi:10.1016/j.neuro.2013.09.003

- Thapar, S., Bhushan, r., and R.P. Mathur. 1995. Degradation of organophosphprus carbamate pesticides in soils: HPLC determination. Biomed Chromatography 9(1):18-22.
- Turusov V, Rakitsky V, Tomatis L. 2002. Dichloro diphenyl trichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110:125–128.
- Uddin M, Saha M, Chowdhury M, & Rahman M. 2013. Pesticide Residues In Some Selected Pond Water Samples Of Meherpur Region Of Bangladesh. *Journal of the Asiatic Society of Bangladesh, Science*, 39(1), 77-82. Available from: https://doi.org/10.3329/jasbs.v39i1.16036
- Unsworth JB. 2010. History of pesticide use. Agrochemicals. IUPAC. Available from: <u>http://agrochemicals.iupac.org/index.php?option=com_sobi2&sobi2Task=sobi</u> 2Details&catid=3&sobi2Id=31
- U.S. EPA. 2002. <u>"Interim Reregistration Eligibility Decision for Chlorpyrifos"</u> Archived from the original on 19 November 2012. Retrieved 28 February 2016.
- Van der Veen I & De Boer J. 2012. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012 Aug;88(10):1119-53. doi: 10.1016/j.chemosphere.2012.03.067. Epub 2012 Apr 25. PMID: 22537891.
- Walker DB. 2019. Environmental and Pollution Science. Surface Water Pollution. 261–292. doi:10.1016/B978-0-12-814719-1.00016-1
- Wasim MA, Paramasivam M, Sengupta D, Purkait S, Ganguly M, Banerjee S. 2009. Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. 157(1-4), 97–104. <u>doi:10.1007/s10661-008-0518-9</u>
- Werner W. 2002. Fertilizers, Environmental Aspects. In Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
- Whitacre DM. 2008. Reviews of Environmental Contamination and Toxicology. Vol 196. Environmental Fate and Toxicology of Carbaryl. Chapter 4, 95–121. <u>doi:10.1007/978-0-387-78444-1_4</u>
- WHO. 2010. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009 (Report). Retrieved 9 July 2014.

- WHO. 1990. Public health impact of pesticides used in agriculture. Geneva: World Health Organization.
- WHO. 2004. Guidelines for drinking-water quality. Geneva: World Health Organization.
- WHO. 2006. In water, sanitation and health. Geneva: World Health Organization.
- WHO. 2011. Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.

Appendix A: Experimental Data 1

Carbaryl calibration curve in GCMS

nstrur Metho Last C Data P	nent ID: d: alibration: Path:	GC-MS c:\brukerws\method 10/15/2020 11:11 A C:\BrukerWS\data\1	s\pesticide_ru M 3.10.2020\14	.10.2020\	10.2020.mth	
1) (CARBARYL					
Level	File	Conc.	RT	Response	RE	
1 2 3 1 2 3 1 1 1 1 1 1	std_1_6_ppm.xms std_2_12_ppm.xms std_3_24_ppm.xms Std_1_100ppb.xms Std_2_200ppb.xms Std_3_500ppb.xms Std_1_200_pbb.xm Std_1_200_pbb.xm Carbaryl_std_9ppb Carbaryl_std_9ppb Carbaryl_std_9ppb Carbaryl_std_180pp arbaryl_std_180pp	s s s s xms .xms b b			164200 141	
1	std_1_9_ppb.xms	8.594	13.950	1.478e+6	164209.141	
2	std_2_18_ppb.xms	18.452	13.948	3.173e+6	171940.328	
1	std 1 9 ppb.XMS	15 179.975	15.940	3.095847	1719401920	
1	std_2_18_ppb.XM	S				
1	std_3_180_ppb.XM	AS				
1	std_2_18_ppb.XMS	s				
1	std 3 180 ppb.XM	MS .				
	Äverage		2.989		170810.313	

Resp. Fact. RSD: 3.580% Coeff. Det.(r2):0.999983 Curve Fit: Linear, Force, None $y \approx +1.719641e+5x$ Replicates M 30-1 1 25 20-15-Peak Size 10 75 Amount (ppb) 100 125 150 50 175 25

CARBARYL

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 01)

Print Date:	19 Oct 2020	13:28:39
-------------	-------------	----------

Target Compound Report for #1 from sample_1.xms

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 02)

Jewel Operator: Sample ID: sample_2 10/19/2020 1:22 PM Last Calibration: GC-MS Instrument ID External Standard Calibration Type: Area Measurement Type: ... violet\sample_2.xms Data File: 10/19/2020 1:53 AM Acquisition Date: ...final_15.10.2020.mth Method: 10/19/2020 1:22 PM Calculation Date: Sample Type: Analysis None Inj. Sample Notes: Compound Information Peak Name: CARBARYL Identified CAS Number: None Compound Number: 1 Result Index: 1 Identification Status Actual Specification Parameter Search Type Highest Pass 13.854 min. 13.917 +/- 0.200 Retention Time N/A Match Result Integration and Quantitation Status Specification 115.1 Parameter Quan lons Actual y = +1.7196e+5x Calibration Equation Linear, Force, None Pass 1.954e+7 >=500 Area 6.820e+6 Height Pass 113.653 ppb >= 0.000 ppb Amount Sample Spectrum for Scan: 491 RT: 13.847 min. BC Quan; 115.1 (50.0:550.0) BP 191 (7.799e+7=100%) sample 2.xms 7-100% 7.799e+7 75% 50% 6 206 91 1.797e+7 1.538e+7 25% 0% 500 m/z 300 100 200 400 5 Reference Spectrum for CARBARYL Scan: 497 RT: 13.917 min. std 3 180 ppb.xms 100% 115 999 4-75% MCps 50% 63 218 145 25% 3i 1b3 0% 200 300 400 500 m/z 100 EI SI Raw Sample Spectrum for Scan: 491 RT: 13.847 min. 2 ES BP 191 (7.799e+7=100%) sample 2.xms SS 100% 57 191 7.074e+7 7.799e+7 75% 1 50% 206 91 97e+7 1 25% 555e+7 D 0% 400 500 m/z 14.3 minutes 300 100 200 13.9 13.5 13.7 14.1

Target Compound Report for #1 from sample_2.xms

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 03)

int Date: 19 Oct 2020 13:35:32			Target Compound Report for #1 from sa				
Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_3 GC-MS Area 10/19/2020 2:17 AM 10/19/2020 1:22 PM Analysis None		Operator: Last Calibration: Calibration Type: Data File: Method:		Jewel 10/19/2020 1:22 PM External Standard violet\sample_3.xms final_15.10.2020.mth		
Compound Information							
Peak Name:	CARE	ARYL					
Result Index:	1	Compound Number: 1		CAS Number	r: None	Identified	
Identification							
Parameter		Specification	1	Actual		Status	
Search Type		Highest				-	
Retention Time		13.917 +/- 0.200		13.856 min.		Pass	
Watch Result	2.1			N/A			
Integration and Quantita	ation						
Parameter		Specification		Actual		Status	
Quan Ions Collibration Equation		115.1		.4 7400			
		Linear, Force, None		y = +1./1900	stox	Pass	
Height		~-500		4 607e+6		1 400	
Amount		>= 0.000 ppb		77.284 ppb		Pass	
	the state of the second s	the second se	-		to Com	. 404 DT: 12 051	

Pr

m sample_3.xms

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 04)

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 05)

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_5 GC-MS Area 10/19/2020 3:06 AM 10/19/2020 1:22 PM Analysis None	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/19/2020 External Sta violet/sam final_15.10	1:22 PM ndard pple_5.xms 0.2020.mth
Compound Information Peak Name:	CARBARYL	CAS Number:	None	Identified
Idenlification	, composite resident			
Parameter	Specification	Actual		Status
Search Type Retention Time Match Result	Highest 13.917 +/- 0.200	13.856 min. N/A		Pass
Parameter Quan lons	Specification 115.1	Actual	154	Status
Calibration Equation Area	n Linear, Force, None >=500	1.836e+7	-32	Pass
Height	>= 0 000 ppb	6.422e+6 106.783 ppb		Pass
Quan ; 115 6- 5-	1 (50.0:550.0)	Sample Spectr BP 191 (1.352) 100%- 1 75%- 50%- 25%- 91 1.727e+7 - 0%- 100 Reference Spe Scan: 497 RT:	um for Scan: <u>e+8=100%) s</u> 191 .352e+8 205 1.957e+7 L 200 ectrum for CA 13.917 min. :	491 RT: 13.853 min. Bi ample_5.xms 300 400 5 RBARYL std 3 180_ppb.xms
-P WCps		- 100%- 105 999 75%- 50%-		
3-		- 63 218 145 0%	3	
2- SI	s Es	Raw Sample S BP 191 (1.352	200 Spectrum for S (e+8=100%) s	300 400 5 Scan: 491 RT: 13.853 m sample_5.xms
1-		57 57 50%- 50%-	191 1.352e+8	
0-		25% .746e+7 0%	1.957e+7	
13.5 13	.7 13.9 14.1 14.1 minut	3 100	200	300 400

Print Date: 19 Oct 2020 13:43:54

Target Compound Report for #1 from sample_5.xms

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 06)

Int Date 19 Oct 2020 14	4 30 07		Target	Compound Report	for #1 from sample_6 xn
Sample ID Instrument ID Measurement Type Acquisition Date Calculation Date Sample Type Inj Sample Notes:	sample_6 GC-MS Area 10/18/2020 10/19/2020 Analysis None	11:26 PM 1:22 PM	Operator Last Calibration Calibration Type Data File: Method	Jewel 10/19/2020 1 External Stan violet\samp final_15.10	22 PM dard ble_6 xms 2020 mth
Compound Information					
Peak Name: Result Index:	CARBAR	RYL Compound Number: 1	CAS Nun	nber: None	Identified
Identification					
Parameter Search Type Retention Time		Specification Highest	Actual		Status
Match Result		13 917 +/- 0.200	13.851 m N/A	in.	Pass
Parameter Quan Ions	ation	Specification	Actual		Status
Calibration Equation Area Height	n	Linear, Force, None >=500	y = +1.71 1.051e+7	196e+5x	Pass
Amount		>= 0.000 ppb	61.113 pr	bb	Pass
Quan : 115. 3.5- 3.0- 2.5-	1 (50.0:550.0)		Sample Sr BP 191 (6. 100%- 75%- 50%- 25%- 91 8.102e+t 0%- 100 8.6ference Scan: 497 100%- 105 999 999	bectrum for Scan: 45 382e+7=100%) san 191 6.382e+7 206 6.9.482e+6 200 300 Spectrum for CARE RT: 13.917 min. std	400 500 m/2 ARYL 3 180 ppb.xms
1.5-			50%- 63 25%- 218 0%-	145 153	
SI 1.0- SS		EI ES	100 Raw Samp BP 191 (6. 100%- 57 4.932e+7	200 300 ble Spectrum for Sca 382e+7=100%) sam 191 6.382e+7	400 500 m/z nr: 491 RT: 13.845 min. nple_6.xms
0.5-	24	Sh	75%- 50%- 25%- 56	206	
0.0-	7 13.9	14.1 14.3	0% 8.478e+6	200 300	400 500

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 07)

Print Date: 19 Oct 2020 14:32:30

Target Compound Report for #1 from sample_7.xms

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type:	sample_7 GC-MS Area 10/18/2020 11:51 10/19/2020 1:22 Analysis	PM PM	Operator: Last Calibr Calibration Data File: Method:	ation: Type:	Jewel 10/19/20 External violet final_1	020 1:22 P Standard sample_7 5.10.2020	M xms .mth	
Inj. Sample Notes:	None							
Compound Information								
Peak Name: Result Index:	CARBARYL 1 Cor	npound Number: 1	(CAS Number:	None		Identified	t
Identification								
Parameter Search Type	Spe	ecification	E	Actual			Status	
Retention Time Match Result	Hig 13.1	917 +/- 0.200	1 N	3.852 min. V/A			Pass	
Integration and Quantit	ation							
Parameter Quan Ions	<u>Spe</u> 115	ecification	A	tual			<u>Status</u>	
Area Height	n Line >=5	ear, Force, None 600	y 6	= +1.7196e .812e+6	+5x		Pass	
Amount	>=	0.000 ppb	3	9.613 ppb			Pass	
Quan ; 115	i.1 (50.0:550.0)			ample Spect	rum for So le+7=1009	can: 492 R %) sample	T: 13.854 7.xms	min. BC
	Λ		75%-	4.	191 914e+7			-
			50%-					-
2.0-			- 25%-	91 6.430e+6	206 6.777e+6			-
			0%F	100	200	300	400	500 m/z
1.5-			- 100%-	eterence Spe can: 497 RT: 115	ectrum for 13.917 m	CARBAR	YL 180_ppb.)	kms –

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 08)

Print Date:	19 Oct 2020 14:35:48

Target Compound Report for #1 from sample_8.xms

Sample ID: Instrument ID: Measurement Type:	sample_8 GC-MS Area		Operator: Last Calibration: Calibration Type:	Jewel 10/19/2020 1 External Star	Jewel 10/19/2020 1:22 PM External Standard violet\sample_8 xms final_15.10.2020.mth		
Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	10/19/2020 10/19/2020 Analysis None	12:15 AM 1:22 PM	Data File: Method:	violet\sam final_15.10			
Compound Information	n						
Peak Name: Result Index:	CARBA	RYL Compound Number: 1	CAS Numb	er: None	Identified		
Identification							
Parameter Search Type Retention Time		Specification Highest 13 917 +/- 0 200	Actual		<u>Status</u> Pass		
Match Result		10.011 11 0.200	N/A		1 555		
Integration and Quan	titation						
Parameter Quan Ions Calibration Equation	00	Specification 115.1	Actual	6 - 1 6 1	Status		
Area Height		>=500	y = +1.719 6.030e+6 2.049e+6	be+ox	Pass		
Amount		>= 0.000 ppb	35.064 ppb		Pass		
Quan ; 11	5.1 (50.0:550.0)	Sample Spe BP 191 (4.3)	ctrum for Scan: 4 72e+7=100%) sa	191 RT: 13.849 min. BC		
	٨		100%-	191			
2.0-	A		- 75%-	4.3/2e+/			
			500				
	11		50%- 91	206			
			25% 5.333e+6	6. 164e+6			
1.5-			100	200 300	400 500 m/z		
			Reference S	pectrum for CAR	BARYL		
			100%- 115	1. 10.011 1111. 31			
Cps			75%-				
≥ 1.0-			50%-63		-		
			25% 218 14	15	-		
			0%				
SI		EI	100	200 300	400 500 m/z		
0.5	s	ES	BP 191 (4.3)	Spectrum for Sc 73e+7=100%) sa	can: 491 RT: 13.849 min. mple_8.xms		
0.5-			100% 57 3.647e+7	191 4.373e+7			
			75%		-		
			50%-		-		
	12	-	25%- 7.946e+6	206 6. 164e+6	-		
0.0-			- 0% - 448 d lan	Juli -			
13.5 1	3.7 13.9	14.1 14.3 minute	s 100	200 300	0 400 500 m/z		

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 09)

Sample ID Instrument ID Measurement Type Acquisition Date Calculation Date Sample Type. Inj Sample Notes	sample_9 GC-MS Area 10/19/2020 10/19/2020 Analysis None	12:40 AM 1:22 PM	Operator: Last Calibr Calibration Data File: Method:	ation Type	Jewel 10/19/2020 External Sta violet\san	1 22 PM indard nple_9 xm 0 2020 ml	is Ih	
Compound Informatio	n							
Peak Name: Result Index:	CARBAR	YL Compound Number: 1	(CAS Numbe	r. None	lo	dentified	
Identification								
Parameter Search Type		Specification Highest	l	Actual		S	tatus	
Retention Time Match Result		13.917 +/- 0.200	i	13.853 min. N/A		P	ass	
Integration and Quan	titation							
Quan lons		Specification 115.1	Ł	Actual		<u>S</u>	tatus	
Calibration Equati Area	on	Linear, Force, None	y	= +1.7196	e+5x			
Height		>=500		229e+6 2.405e+6		P	ass	
Amount		>= 0.000 ppb	3	36.220 ppb		P	ass	
Quan ; 1	15.1 (50.0:550.0)		Sample Sp BP 191 (5.4	ectrum for Sca 474e+7=100%	n: 491 R) sample	T: 13.853 m 9.xms	in. BC
2.5-			_ 100%-		101			-
	Α		75%-		5.4/40+/			-
			50%					
			5070	91	206			
2.0-			25%-	6.996e+6	7.555e+6			-
			0%-		سليلل			
				100	200	300	400	500 m/z
				Reference Scan: 497	Spectrum for C	ARBAR	/L 180 ppb xm	ns
1.5-			100%-	115			ppe.xii	-
s			75%-	995	1			-
Ū V			50%					
			5078	63				
10			25%-	11	103			-
1.0			0%-		<u>+</u>			
SI		EI		100	200	300	400	500 m/z
	ss	ES		Raw Samp BP 191 (5)	le Spectrum fo	r Scan: 4	91 RT: 13.8	53 min.
			100%-	57	191	ampic	J.XIII5	-
0.5-			75%-	4.494e+7	5.474e+7			_
			509/					
			50%-	56	000			
	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25%-	8.076e+6	7.555e+6			-
0.0-			0%-	J.a. Lak	- the			
13.5	13.7 13.9	14.1 14	3	100	200	300	400	500

Print Date 19 Oct 2020 14 38 39

Target Compound Report for #1 from sample_9 xms

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 10)

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:		sample_10 GC-MS Area 10/19/2020 1:04 AM 10/19/2020 1:22 PM Analysis None		Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/19/2020 1 External Star violet\samp final_15.10	Jewel 10/19/2020 1:22 PM External Standard violet\sample_10.xms final_15.10.2020.mth		
Com	ound Information							
P	eak Name:	CAPBAD	21					
R	esult Index:	1 Compound Number: 1		CAS Number: None		Identified		
Ident	ification							
Parameter Search Type Retention Time Match Result		Specification Highest 13.917 +/- 0.200		<u>Actual</u> 13.853 m N/A	nin.	<u>Status</u> Pass		
Intec	ration and Quantit	ation						
E	Parameter		Specification	Actual		Status		
Calibration Equation Area Height		n	Linear, Force, None >=500	y = +1.7 5.959e+0 2.020e+0	196e+5x 5 5	Pass		
P	Amount		>= 0.000 ppb	34.653 p	pb	Pass		
2.1 1.	Quan ; 115.	(50.0:550.0)		Sample Sp BP 191 (3. 100%- 75%- 50%- 25%- 91 5.257e+1 0%- 100 Reference Scan: 497 100%- 101 99:	ectrum for Scan: 4 865e+7=100%) sar 191 3.865e+7 206 5.653e+6 200 300 Spectrum for CAR RT: 13.917 min. st	92 RT: 13.857 min. BC mple_10.xms - - - - - - - - - - - - - - - - - - -		
¥ 1.	0-			50%- 63 25%- 218 0%-	145 103	-		
0.	5- 5-		EI	- 100 - 100%- 8aw Sam BP 191 (3 57 3:\$70e+ 75%- 50%- 56	200 30 ple Spectrum for S <u>3.866e+7=100%) s</u> 191 7 3.866e+7 000	0 400 500 m/z ican: 492 RT: 13.857 min. ample_10.xms -		
0	.0-13.5 13	.7 13.9	14.1 14.1 minut	25% 8291e+	6 206 5.8532+6	00 400 500 m/z		

Print Date: 19 Oct 2020 13:30:58

Target Compound Report for #1 from sample_10.xms
Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 11)

Print Date: 19 Oct 2020 14:40:29

Target Compound Report for #1 from sample_kl.xms

Sample Instrume Measure Acquisit Calcula Sample Inj. Sam	ID: ent ID: ement Type: tion Date: tion Date: Type: nple Notes:	sample_kl GC-MS Area 10/18/2020 10: 10/19/2020 1:2 Analysis None	38 PM 2 PM	Operato Last Cal Calibrat Data Fil Method:	or: libration: ion Type: e:	Jewel 10/19/20 External violet\s final_1	20 1:22 Pl Standard ample_kl. 5.10.2020	M xms .mth	
Compo	und Information								
Pea Res	k Name: sult Index:	CARBARYL 1 C	Compound Number:	1	CAS Numbe	er: None		Identified	
Identific	cation								
Para	ameter arch Type	SI	Specification		Actual			Status	
Ret	ention Time Ich Result	'n	3.917 +/- 0.200		13.853 min. N/A			Pass	
Integra	tion and Quantita	ation			and the second second			Chathan	
Par Qua	ameter an lons	1	Specification 115.1		Actual			Status	
Cal	ibration Equation	L	inear, Force, None		y = +1.7196	ie+5x		Pass	
Hei	ight		-300		1.304e+7			Deere	
Am	ount	;	>= 0.000 ppb		216.121 ppb	•		Pass	
	Quan; 115.1	(50.0:550.0)			Sample Spect BP 191 (2.732	trum for Sca 2e+8=100%	n: 487 RT) sample_	: 13.856 mi kl.xms	n. BC
40.5		٨		100%-	1 :	191 2.732e+8			1
12.5		Λ		75%-	1				-
				50%-	-				-
				25%-	91	206			_
10.0-				20%	3.505e+7	3.90/e+/			
10.0				0%-		200	200	400	500
					100 Reference Sn	200	ARBARY	400	m/z
					Scan: 497 RT	: 13.917 mir	n. std 3 1	80 ppb.xm	5
75				100%-	115 999.				1
sd 7.5				75%-					4
MC				50%-	- 11				_
				0.00	63	5			
5.0				20%] t 19	3			1
5.0-				0%			1		
	SI		EI		100	200	300	400	500 m/z
	ss		ES		Raw Sample BP 191 (2.73	Spectrum fo 2e+8=100%	or Scan: 48) sample	87 RT: 13.85 kl.xms	56 min.
				100%	-	191			-
2.5	1			75%	57	2.1328+0			_
				508/	1.1240+0				
		15		50%	7 .				1
		1		25%	91 3.521e+7	3.907e+7			-
0.0				0%	dilla ha	ult			
	13.5 13.	7 13.9	14.1 1. min	4.3 utes	100	200	300	400	500 m/z

Concentration of carbaryl (Chromatogram & Mass spectrum for sample no 12)

Sample Instrume Measure Acquisit Calculai Sample Inj. Sam	ID: ent ID: ement Type: lion Date: tion Date: Type: nple Notes:	sample_4_kl GC-MS Area 10/18/2020 10/19/2020 Analysis None	11:02 PM :22 PM		Operator: Last Calib Calibratior Data File: Method:	ration: 1 Type:	Jewel 10/19/2020 External St olet\samj final_15.) 1:22 PN andard ble_4_kl. 10.2020.1	1 xms mth	
Compo Pea Res	und Information k Name: ult Index: cation	CARBAR 1	YL Compound Number	: 1		CAS Numbe	er: None		Identified	
Para Sea Rete Mat	ameter Irch Type ention Time ch Result tion and Quantita	tion	Specification Highest 13.917 +/- 0.200			<u>Actual</u> 13.853 min. N/A			<u>Status</u> Pass	
Para Qua Cali Area Heig Amo	ameter an lons ibration Equation a ght ount	lion	Specification 115.1 Linear, Force, None >=500 >= 0.000 ppb	•		<u>Actual</u> y = +1.7196 3.467e+7 1.188e+7 201.608 ppt	Se+5x		<u>Status</u> Pass Pass	٠
- 10.0-	Quan ; 115.1	(50.0:550.0)		-	100%- 75%- 50%- 25%-	91 2.636e+7	ectrum for Sca 46e+8=100% 191 1.548e+8 206 3.226e+7 ↓ ↓ ↓	n: 491 R) sample	T: 13.847 m 4 kl.xms	iin. BC
7.5- 8					100%- 75%-	100 Reference 5 Scan: 497 F 1[5 999	200 Spectrum for C RT: 13.917 mir	300 CARBAR 1. std 3	400 YL 180_ppb.xm	500 m/z
5.0-	ol		F .	-	50% 25% 0%	63 218	145 103 200	300	400	
2.5-	SS		ES	_	100%- 75%- 50%-	Raw Sampl BP 191 (1.5 57 1.261e+8	e Spectrum fc 547e+8=100% 191 1.547e+8	or Scan: 4	491 RT: 13.8 4 kl.xms	347 min.
0.0-	13.5 13.7	13.9	14.1	14,3	25%- 0%-	91 2.659e+ 100	206 7 3.226e+7 •••11 ••• 200	300	400	500

Target Compound Report for #1 from sample_4_kl.xms

Appendix A: Experimental Data 2

Carbaryl calibration curve

Compound Summary for CARBARYL

Print Date: 17 Oct 2020 15:42:38 Compound Summary Report

Instrument ID:	GC-MS
Method:	c:\brukerws\methods\pesticide_run_method_final_14.10.2020.mth
Last Calibration:	10/15/2020 11:11 AM
Data Path:	C:\BrukerWS\data\13.10.2020\14.10.2020\

1)	CARBARYL				
Level	File	Conc. ppb	<u>RT</u>	Response Ion: 115.1	RF
1	std_1_6_ppm.xms				
1	std_2_12_ppm.xms				
1	std_3_24_ppm.xms				
1	Std_1_100ppb.xms				
1	Std_2_200ppb.xms				
1	Std_3_500ppb.xms				
1	Std_1_200_ppb.xms				
1	carbanyl_18_ppm.xms				
1	Carbaryl_std_9ppb.XM	IS			
1	Carbaryl_std_9ppb.xm	S			
1	Carbaryl_std_18ppb				
1	arbaryl_std_180ppb				
1	std 1 9 ppb.XMS	8.594	13.950	1.478e+6	164209.141
2	std_2_18_ppb.XMS	18.452	13.948	3.173e+6	176281.500
3	std 3 180 ppb XMS	179.975	13.948	3.095e+7	171940.328
	Average:		2.790		170810.313
	RF Range:				136648.250 - 204972.375

CARBARYL

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S01)

Print Date 17 Oct 2020 15 46 03

Sample ID Instrument ID Measurement Acquisition Da Calculation Da Sample Type Inj Sample Ni	Type ale ale otes i	sample_1 GC-MS Area 10/17/2020 1 1(10/17/2020 3 39 Analysis None) РМ Э РМ	Operato Last Ca Calibrat Data Fil Method	or: libration: ion Type e:	Jewel 10/17/2 Extern 10.20 final_	2020 3:39 al Standad 020\sampl _15:10:202	PM rd le_1.xms 20.mth	
Compound Inf	ormation								
Peak Nam	e:	CARBARYL							
Result Inde	ex.	1 Co	ompound Number: 1		CAS Numb	er: None		Identifie	d
Parameter Search Tvi	pe	SI	opesition		Actual			Status	
Retention Match Res	Time	13	3.917 +/- 0.200		13.855 min. N/A			Pass	
Integration and	d Quantitatio	<u>n</u>							
Parameter Quan Ions		<u>Si</u> 11	becification 15.1		<u>Actual</u>			<u>Status</u>	
Area Height	Equation	Li >:	near, Force, None =500		y = +1.7196 645695 264401	5e+5x		Pass	
Amount		>:	= 0.000 ppb		3.755 ppb			Pass	
350- 300-				100%- 75%- 50%- 25%- 0%-	91 691647.137 100	7e+6=1009 191 5.177e+6 206 744B10.010 1 1	6) sample	1.xms 400	5000/z
250-			-	100%-	Reference Sp Scan: 497 RT 115 999	ectrum for 13.917 m	CARBAR' in. std 3	YL 180 ppb.xr	ns
g 200-			-	75%- 50%-	63				-
150-		$ \rangle$	-	25%- 0%-		3	240		-
	51	/	EI		Raw Sample S	Spectrum fr	SUU or Scan: 4	400	500 m/z
100-	SS		ES -	100%- 75%-	BP 57 (1.379e 57 1379e+7	+7=100%)	sample	1.xms	-
50-	\sim	\sim	Ym	50%- 25%-	55 1,775e+6	191 193e+6			-
				0%	distan.	لب			

Target Compound Report for #1 from sample_1.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S02)

Sample ID. Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes;	sample_2 GC-MS Area 10/17/2020 1:35 PM 10/17/2020 3:39 PM Analysis None	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/17/2020 External S 10.2020 final_15.	0 3:39 PM tandard Isample_2.xms 10.2020.mth	
Compound Information Peak Name: Result Index:	CARBARYL 1 Compound Number: 1	CAS Numbe	r: None	Identifie	ed
Identification Parameter	Specification	Actual		Status	
Search Type Retention Time Match Result	Highest 13.917 +/- 0.200	13.853 min. N/A		Pass	
Integration and Quantita Parameter Quan lons	specification	Actual		Status	
Calibration Equation Area Height	Linear, Force, None >=500	y = +1.71966 864135 338063	e+5x	Pass	
Amount	>= 0.000 ppb	5.025 ppb	ter Coop	Pass	min BC
Quan ; 115. 400-	1 (50.0:550.0)	- 100%- 75%-	3e+6=100%) 191 7.023e+6	sample 2.xms	
300-		50%- 25%- 91 1.025e+6 0%- 100	206 1.025e+6 1.1 200	300 400	500 m/z
		Reference Sp Scan: 497 RT 100% 105 999	ectrum for CA : 13.917 min.	ARBARYL std 3 180_ppb.	xms
සි 200-		_ 50%- 63 25%- 218 143	5		-
al a	E	0% 100	200	300 400	500
100-	ES	Raw Sample S BP 57 (1.448e 100%- 57 1.1448e+7 75%-	Spectrum for e+7=100%) sa	Scan: 492 RT: 13 ample_2.xms	3.858 min.
	~ ~~~~	50%- 25%- 1,832e+6	7.032e+6		-
13.5 13.	7 13.9 14.1 14.3 minute	0% 100	200	300 400	500 m/z

Print Date: 17 Oct 2020 15:48:00

Target Compound Report for #1 from sample_2 xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S03)

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_3 GC-MS Area 10/17/2020 1:59 PM 10/17/2020 3:39 PM Analysis None	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/17/2020 External Sta 10.2020\s final_15.1	3:39 PM andard ample_3.xms 0.2020.mth	
Compound Informatic	n				
Peak Name: Result Index:	CARBARYL 1 Compound Number: 1	CAS Numbe	er: None	Identifi	ed
Identification					
Parameter Search Type Retention Time Match Result	<u>Specification</u> Highest 13.917 +/- 0.200	<u>Actual</u> 13.856 min. N/A		<u>Status</u> Pass	
Integration and Quan	titation				
Parameter Quan Ions Calibration Equati	Specification 115.1	Actual	645v	Status	
Area	>=500	212098	JET JX	Pass	
Amount	>= 0.000 ppb	74485 1.233 ppb		Pass	
Quan ; 11	5.1 (50.0:550.0)	Sample Spec BP 191 (1.49) 100%- 175%- 50%- 25%- 233314.8712 0%- 100	trum for Scan: 4 4e+6=100%) sa 1p1 .494e+6 206 206 206 206 2074.538 11	491 RT: 13.850 ample_3.xms	0 min. BC - - 500 _{m/z}
75- 2		Reference Sp Scan: 497 RT 100%- 115 - 999 75%-	ectrum for CAR : 13.917 min. st	BARYL 1 <u>3 180 ppb.</u>	xms -
2		50%- 63 25%- 218 145 103	5		-
50- SI	j jei	100	200 300	0 400	500 /2
s	s Fes	Raw Sample : BP 57 (1.1076 100%- 57 11107e+7 75%-	Spectrum for So e+7=100%) sam	can: 491 RT: 1; nple 3.xms	
25-		25%- 1550e+6 1	191 .511e+6		-
13.5 13	7 13.9 14.1 14.3 minutes	100	200 300	0 400	500 m/z

Print Date: 17 Oct 2020 15:50:34

Target Compound Report for #1 from sample_3.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S04)

Sample ID sample 4 Operator: Jewel Ansument ID GC-MS Calibration: Joint 1017/2020 339 PM Measurement Type: Anaysis Calibration: Joint 2020 339 PM Date II 1017/2020 224 PM Date II Fire: JO 2020 ample 4, xms Calibration Type: Anaysis Infinite 15 (10 2020 mth Sample ID CARBARYL Method: Infinite 15 (10 2020 mth Sample Information Peak Name CARBARYL Result Infer: Infinite 15 (10 2020 mth Peak Name CARBARYL Result Infer: 1 CAS Number: None Identified Seampound Information Specification Actual Status Status Result Index: 1 Compound Number: 1 CAS Number: None Identified Teamotetic Specification Actual Status Status Teamotetic Specification Actual Status Quan ; 115.1 (50.0:50.0) Second Spectrum for Scan: 491 RT: 13.849 min. E 100% 125- Ss Specification Actual Status	Int Date. If Correct		-		
Istument ID 0 GC-MS Last Calibration ID 1017/2020 3.39 PM Calibration Type: Area Calibration Type: Last Calibration Type: Analysis None Calibration Type: Analysis None Calibration Type: CARBARVL Result Information Peak Name: CARBARVL Result Information Peak Name: CARBARVL Result Information Type I 3.917 ++ 0.200 II 3.855 min. Pass Match Result Information Type II 3.917 ++ 0.200 II 3.855 min. Pass Match Result Information Type II 3.917 ++ 0.200 II 3.855 min. Pass Match Result II Calibration Type II 3.917 ++ 0.200 II 3.855 min. Pass Match Result II Calibration Equation Lunear, Force, None 2.20121 Pass 94076 Pass 940	Sample ID:	sample_4	Operator:	Jewel	
Descurrent Type Area Calibration Type: External Standard Decusition Date: 10/17/2020 2:24 PM Data File:	Instrument ID:	GC-MS	Last Calibration:	10/17/2020 3:	39 PM
Occusion Date 10/17/2020 2:24 PM Data File:	Measurement Type:	Area	Calibration Type:	External Stan	dard
Jacuation Date: 10/17/2020 3/39 PM Method:	Acquisition Date:	10/17/2020 2:24 PM	Data File:	10.2020\sar	mple_4.xms
Jample Notes: Analysis ng, Sample Notes: None Compound Information Peak Name: CARBARYL Result Index: 1 Compound Number: 1 CAS Number: 1 Compound Number: 1 Case of the second o	Calculation Date:	10/17/2020 3:39 PM	Method:	final_15.10.	2020.mth
None Compound Information Peak Name: CARBARYL Result Index: 1 Compound Number: 1 CAS Number: None Identified Jamification Parameter Specification Actual Status Resention Time 13/15/1 Cass nin. Pass Match Result N/A N/A Pass Area >=500 Specification Actual Status Quant Information Specification Actual Status Date of the sector N/A Pass Match Result N/A Pass Jong Sample Spectrum for Scan: 491 RT: 13.849 min. E Sample Spectrum for Scan: 491 RT: 13.849 min. E Jong Sample Spectrum for Scan: 491 RT: 13.849 min. E Sample Spectrum for Scan: 491 RT: 13.849 min. E Jong Sample Spectrum for Scan: 491 RT: 13.849 min. E Sample Spectrum for Scan: 491 RT: 13.849 min. E Scan: 497 RT: 13.917 min. std 3 180 ppb.xms Sample Axms Sample Axms Jong Sample Axms Sample Axms Sample Axms Jong Sample Axms	Sample Type:	Analysis			
Compound Information CARBARYL CARBARYL CARBARYL Cash Number: 1 CAS Number: None Identified Parameter Specification Actual Status Status Parameter Specification Actual Status Parameter Resention Time 13.917 +/- 0.200 NA NA Parameter Specification Quantion S 115.1 Specification Actual Status Parameter Quantions Linear, Force, None y = +1.796e+5x Pass Pass Amount >= 0.000 ppb 1.524 ppb Pass 94076 125 Quan; 115.1 (50.0550.0) 192 Sample Spectrum for Scan: 491 RT: 13.849 min. E 126 Quan; 115.1 (50.0550.0) 100% 119 1.3978+6 126 Sample Spectrum for Scan: 491 RT: 13.849 min. E Scan: 497 RT: 13.917 min. sid 3 180 ppb.xms 100% 115.1 100% 115 115 100% 115 115 115 115 115 100% Sample Spectrum for Scan: 491 RT: 13.849 min. E <td>Inj. Sample Notes:</td> <td>None</td> <td></td> <td></td> <td></td>	Inj. Sample Notes:	None			
Campound Information CARBARYL Result Index: CARBARYL Compound Number: 1 CAS Number: None Identified Parameter Beach Type Specification Highest Retention Time Specification 13.917 +/- 0.200 Actual Status Parameter Beach Type Specification Highest Retention Time Actual Status Duan lons 115.1 Actual Status Calibration Equation Area Height Specification Linear, Force, None >= 0.000 ppb Actual Status 125- 00- 259- 259- 259- 259- 259- 259- 259- 259					
Peak Name: CARBARYL Compound Number: 1 CAS Number: None Identified Parameter Specification Actual Status Status Parameter Specification Actual Status Status Search Type Highest NA Pass NA Match Result Match Result Status Status Status Ouan lons 115.1 Force, None y = +1,7196e+5x Pass Area >=600 262121 Pass Amount >= 0.000 ppb 1.524 ppb Pass 125- Quan ; 115.1 (50.0:550.0) Image: Force, None y = +1,7196e+5x Pass 100- Image: Force, None y = +1,7196e+5x Pass Pass 100+ Image: Force, None y = +1,7196e+5x Pass Pass 125- Quan ; 115.1 (50.0:550.0) Image: Force, None y = +1,7196e+5x Pass 100+ Image: Force, None y = -1,75% 191 192 100% 100+ Image: Force, None <t< td=""><td>Compound Information</td><td>l</td><td></td><td></td><td></td></t<>	Compound Information	l			
Generation Securitization Actual Status Parameter Search Type Highest Specification 13.855 min. Actual Status Parameter Quan ions 13.917 +/ 0.200 13.855 min. Pass Match Result Specification 13.855 min. Actual Status Parameter Quan ions Specification 115.1 Actual Status Calibration Equation Area Amount Specification 15.1 Actual Status 262121 Pass Pass Height Amount >= 0.000 ppb 1.524 ppb Pass 100% 1.976+6 1.976+6 1.976+6 100% 1.976+7 1.976+7 1.976+7 100% 1.976+7 1.976+7 1.976+7 100% 1.976+7 1.976+7 1.976+7 100% 1.976+7 1.976+7 1.976+7 100% 1.976+7 1.976+7 1.976+7 100% 2.976 3.010 400 500 1.976+7 100% 2.111 1.976+7 1.976+7 100% <	Peak Name: Result Index	CARBARYL 1 Compound Number	CAS Numbe	Ar None	Identified
Parameter Search Type Retention Time Match Result Specification Highest 13,817 +/- 0.200 Actual Status Match Result 13,917 +/- 0.200 13,855 min. Pass Match Result 13,917 +/- 0.200 13,855 min. Pass NA Status Status Status Parameter Quan lons Specification 115,1 Actual Status Calibration Equation Area Amount >= 0.000 ppb Actual Status Quan ; 115,1 (50,0,550,0) Sample Spectrum for Scan: 491 RT: 13,849 min. E BP 191 (1975er=6100%) sample 4.xms 1975er+6 100- 100- 50- 50- 50- 50- 50- 50- 50- 50- 50-	Identification			a. None	identilied
Search Type Highest Import Retention Time 13.917 +/- 0.200 13.855 min. Pass Match Result 13.917 +/- 0.200 13.855 min. Pass Parameter Specification Actual Status Quantins T15.1 Pass Pass Area >=500 94076 Pass Height >=0.000 ppb 1.524 ppb Pass 125- Quan : 115.1 (50.0.550.0) Sample Spectrum for Scan: 491 RT: 13.849 min. E Pass 100- 100% 192 19.75e+0=100%) sample 4.xms 100% 125- Sample Spectrum for Scan: 491 RT: 13.849 min. E Sample Spectrum for CARBARYL 100- Sample Spectrum for CARBARYL Scan: 497 RT: 13.917 min. std 3 180 ppb.xms 100- Sample Spectrum for Scan: 491 RT: 13.849 min. E Sample Spectrum for Scan: 491 RT: 13.849 min. E 50% 50% 50% 1152 100- Sample Actual 1100 1100 75- Sample Actual 1100 1152 100% Sample Actual 1152 <td>Parameter</td> <td>Specification</td> <td>Actual</td> <td></td> <td>Status</td>	Parameter	Specification	Actual		Status
Reterence Spectrum for CARBARYL Sample Spectrum for Scan: 491 RT: 13.849 min. E 100- 115.1 125- 115.1 125- 115.1 125- 115.1 125- 115.1 126- 115.1 125- 115.1 125- 115.1 126- 115.1 100- 115.1 125- 115.1 126- 100%- 127- 115.1 126- 100%- 127- 115.1 128- 100%- 126- 100%- 127- 115.1 128- 115.1 129- 115.1 120- 115.1 120- 115.1 126- 13.85 min. 127- 13.85 min. 128- 115.1 129- 100%- 120- 115.1 120- 119 120- 119 120- 119 120- 119 1100%- 119 1100%- 119 1100%- 119 1100%- 119 1100%- 119 1100%- 119 <td>Search Type</td> <td>Highest</td> <td></td> <td></td> <td>212100</td>	Search Type	Highest			212100
Integration and Quantitation Status Status Parameter Quan lons Status Status Status Calibration Equation Linear, Force, None $y = +1,7196e+5x$ Pass Area >=500 94076 Pass Height Amount >= 0.000 ppb 1.524 ppb Pass 125- Quan ; 115.1 (50.0:550.0) Sample Spectrum for Scan: 491 RT: 13.849 min. f 9191 (1.975e+6-100%) sample 4.xms 100- 197 1.975e+6 192 301022.534 100- 100 200 300 400 500 100% 115.1 100- Sample Spectrum for Scan: 491 RT: 13.849 min. f 197 100- 100 200 300 400 500 100% 115.1 100- 200 300 400 500 100% 115.1 100- 200 300 400 500 100% 115.1 100- 200 300 400 500 157 115.1 100- 200 300 400 500 157 115.1 100- 100 200 300 400 500 157 115.1 110- 100 200 300 400 500 157 100% 157 1152e+7 159	Match Result	13.917 +/- 0.200	13.855 min. N/A		Pass
Parameter Quan ions Specification 115.1 Actual Status Calibration Equation Area Area Area Amount Linear, Force, None >=500 y = +1,7196e+5x 262121 Pass Meight Amount >= 0.000 ppb Sample Spectrum for Scan: 491 RT: 13.849 min. 6 BP 191 (1.975e+6=100%) sample 4.xms 125 00 Sample Spectrum for Scan: 491 RT: 13.849 min. 6 BP 191 (1.975e+6=100%) sample 4.xms 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 50 Ss 50 63 145 50 Ss 145 155 191 100% 100 200 300 400 500 50 Ss 55 191 1522e+7 192 141 143	Integration and Quantil	ation	n/A		
Quan ions 115.1 Calibration Equation Linear, Force, None Area >=5000 Height >=0.000 ppb 125- Quan : 115.1 (50.0:550.0) 125- Quan : 115.1 (50.0:550.0) 125- Image: State of the state of t	Parameter	Specification	Actual		Status
$\begin{array}{c} \text{Lineal, Force, None} \\ \text{Height} \\ \text{Area} \\ \text{Height} \\ \text{Amount} \\ \text{>= 0.000 ppb} \\ 1.524 ppb \\ \text{Pass} \\ \begin{array}{c} \text{Sample Spectrum for Scan: 491 RT: 13.849 min. E} \\ \text{BP 191 (1.975e+6=100\%) sample. 4.xms} \\ 100\% \\ 191 \\ 100\% \\ 197 \\ 1.975e+6 \\ 301022.534 \\ 0\% \\ 100\% \\ 100\% \\ 191 \\ 100 \\ 25\% \\ 301022.534 \\ 0\% \\ 100\% \\ 110 \\ 25\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 50\% \\ 518 \\ 218 \\ 103 \\ 218 \\ 103 \\ 218 \\ 103 \\ 218 \\ 103 \\ 218 \\ 103 \\ 218 \\ 103 \\ 25\% \\ 50\% \\ $	Quan lons Calibration Equation	115.1		-	
Height Amount >= 0.000 ppb Sample Spectrum for Scan: 491 RT: 13.849 min. E 125- 100- 100- 100- 100- 100- 100- 100- 10	Area	>=500	y = +1./196 262121	XC+9X	Pass
Amount >= 0.000 ppb 1.524 ppb Pass Quan : 115.1 (50.0:550.0) Sample Spectrum for Scan: 491 RT: 13.849 min. E 100% 125 100% 1975e+6 100 1975e+6 100 1975e+6 100 20 30 100 20 30 100 20 30 100 20 30 100 20 30 100 20 30 100 20 30 100% 1152 100 20 30 100% 1152 100% 100 20 300 400 50 50% 50 50% 50 50% 50 50% 50 50% 50 50% 50 50% 50 50% 50% 50% 50% 50% 50% 50% 50% 100 50% 1192e+7 50% 100% 50% 100% 50% 100% 50% 100% 50% 100% 50% </td <td>Height</td> <td></td> <td>94076</td> <td></td> <td>1 000</td>	Height		94076		1 000
Quan; 115.1 (50.0:550.0) Sample Spectrum for Scan: 491 RT: 13.849 min. E 125 100% 125 191 (1.975e+6100%) sample_4.xms 100% 192 100% 192 25% 301022.534 0% 144 100 200 100% 115 100% 192 100% 192 25% 301022.534 0% 144 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 115 117 126 117 127 128 128 141 129 141 141 143	Amount	>= 0.000 ppb	1.524 ppb		Pass
Quan : 115.1 (50.0:550.0) Sample Spectrum for Scan: 491 RT: 13.849 min. E 125- Image: spectrum for Scan: 491 RT: 13.849 min. E 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+6 100% 1.976+7 100% 1.977 115 1.97 115 1.97 125 1.91 125 1.91 125 1.91 125 1.91 125 1.91 125 1.91 125 1.91 126 1.92 127 1.99 128 1.92 129 1.91 1200% 1.92 1215 1.91					
125- 100% 191 (1.975e+6=100%) sample 4.xms 100% 192 100% 192 100% 192 25% 301022.534 0% 100 100 200 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 100% 115 115 137 135 137 135 137 135 137 135 137	Quan ; 115	.1 (50.0:550.0)	Sample Spec	trum for Scan: 4	91 RT: 13.849 min. B
125- 100- 1.976+6 100- 192 100- 100 200 100- 100 200 100- 100 200 100- 100 200 100- 100 200 100- 100 200 100- 100 200 100- 115 100- 115 100- 115 100- 115 100- 115 115 117 115 117 115 117 115 117		٨	100%- BP 191 (1.97	101 Seto=100%) Sar	nple_4.xms
125- 75% 100- 100 25% 301022.534 0% 100 100 200 300 400 50- 50% 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 50- 51 51 51 52 111 52 112 53 112 54 113 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 55 191 <td< td=""><td></td><td>1)</td><td>100 %</td><td>1.975e+6</td><td></td></td<>		1)	100 %	1.975e+6	
100- 50%- 192 100- 100 200 300 400 500 75- 100%- 100 200 300 400 500 75- 100%- 115 115 117 139 141 143	125-		_ 75%-		
100- 50%- 192 100- 25%- 301022.534 0%- Litertit 100- 200 300 400 50- Si Si Si		11			
100- 100- 100- 100- 100- 100- 25%- 301022.534 100- 100- 200- 300- 400- 500- 75- 100%- 115- 120- 115- 120- 50- SS SS 115- 137- 139- 141- 143- 100- 135- 137- 139- 141- 143-		11	50%		
100- 301022.534 100 200 300 400 500 75- 100 200 300 400 500 75- 100% 115 123 145 50- SS 15 199 50- SS 100 200 300 400 50- SS 100% 115 123 50- SS 100% 115 123 50- SS 100% 100 200 300 400 50- SS 100% 100 200 300 400 50- SS 100% 1192 120 300 400 50- SS 100% 1192 120 300 400 50- SS 1192 120 300 400 500 25% 100% 1192 120% 1192 120% 1192 135 137 139 141 143 140 240 240 140			25%	192	
100- 100 200 300 400 500 75- 100% 100 200 300 400 500 75- 100% 100 200 300 400 500 75- 50% 218 145 103 999 50% 218 145 100% 100 200 300 400 75- 50% 218 145 100% 100 200 300 400 100% 100 200 300 400 100% 100 200 300 400 50% 25% 100% 100 200 300 115 137 139 141 143 143			30	1022.534	
100- 100 200 300 400 500 75- SI Si Si Si Si Si 50- Si Si Si Si Si Si 50- Si Si Si Si 100/- Si Si Si Si 100/- Si Si Si Si 1135 137 139 141 143			0%	<u></u>	
75- Si Ei 50- Si Si 50- Si </td <td>100-</td> <td></td> <td>- 100</td> <td>200 300</td> <td>400 500 n</td>	100-		- 100	200 300	400 500 n
75- Si			Reference Sp	bectrum for CARE	BARYL
75- 50- 50- 50- 50- 50- 50- 50- 5		11	100%- 1/15	. 13.917 1111. 50	3 100 pp0.xms
75- 50- 50- 50- 50- 50- 50- 50- 5		11	999		
75- 50%- 63 145 50- 51 51 100 200 300 400 500 50- 53 100 200 300 400 500 50- 53 100 200 300 400 500 50- 55 11 11 11 11 11 50- 55 191 1592e+6 1.984e+6 11 14 14 14 14 14	2		75%-		
50- SI EI 50- SS <	75	11	50%		
50- SI EI 50- SS <	15		63		
50- SS SS File 50- SS File 50- SS File 25- File File 100- 200 300 400 50- SS File File 100% File File 100% File 100% File 100% File 100% File 100% File 100% File 1192e+7 File 50% 191 155 191 1592e+6 1.984e+6 10% File 100 200 200			25% 218 145	5	
50- SS SS File 50- SS File 50- SS File 25- File File 135 137 139 141 143				3	
50- SS SS FE 100 200 300 400 500 50- SS SS FS FS FS 100% BP 57 (1.192e+7=100%) sample 4.xms 100% 57 1192e+7 55 191 100% 155 191 1592e+6 1.984e+6 1135 137 139 141 143				ala ala	
50- 50- 50- 50- 50- 50- 55- 100%- 55- 100%- 55- 100%- 55- 100%- 55- 192e+7- 55- 191- 1592e+6 1.984e+6 100%- 100%- 1592e+6 1.984e+6 100%- 1	SI		100	200 300	400 500
25- 13.5 13.7 13.9 14.1 14.3 15- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 100%- 1192e+7 1192e+6 1.984e+6 0%- 100%- 100%- 100%- 100%- 1192e+7 100%- 100%- 100%- 1192e+7 100%- 100%- 100%- 100%- 1192e+7 100%-	50- 55	st IY∖ ⊫s	Raw Sample	Spectrum for Sca	an: 491 RT: 13.849 m
25 - 135 - 137 - 139 - 141 - 143 - 75% - 191 - 155 - 191 - 1592e+6 - 1.984e+6 - 0% - 100 - 200 - 200 - 100			100% 1 57	e+7-100%) sam	pie_4.xms
25 - 135 - 137 - 139 - 141 - 143 - 75% - 50% - 25% - 155 - 191 - 55% - 1592e+6 - 1.984e+6 - 0% - 100 - 200 - 200 - 100			1.192e+7		
25 - 135 - 137 - 139 - 141 - 143 - 50% - 155 - 191 - 1592e+6 - 1.984e+6 - 0% - 100 - 200 - 100			75%-		
25 - 135 - 137 - 139 - 141 - 143 - 50% - 155 - 191 - 555 - 191 - 555 - 191 - 555 - 191 - 555 - 191 - 555 - 191 - 555 - 191 - 1592e+6 - 0% - 1592e+6 - 0% - 1592e+6 - 0% - 100 - 200 - 200 - 10		In/ MAA			
25 - 135 - 137 - 139 - 141 - 143 - 25% - 155 - 191 - 1592e+6 - 1.984e+6 - 0% - 140	hM		√ ^{50%}		
25 + 1592e+6 1.984e+6 = 0% + 1592e+6 1.984e+6 = 0% + 1592e+6 1.984e+6 = 0% + 1592e+6 = 1592e+6	1~ 1	, , , , , , , , , , , , , , , , , , , ,	25% 55	191	
135 137 139 141 143 0% 100 200 200 14	25-		1 592e+6 1	.984e+6	
135 137 139 141 143 100 200 200 14			0%		
	13.5 13	7 13.9 14.1 .14.	3 100	200 300	400 500

Target Compound Report for #1 from sample_4.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S05)

Sample ID:	sample_5		Operator:	Jewel	a last a plant a series of
Instrument ID	GC-MS		Last Calibration:	10/17/2020 3	3:39 PM
Measurement Type	Area		Calibration Type:	External Sta	ndard
Acquisition Date:	10/17/2020	2:49 PM	Data File	10 2020\sa	imple_5 xms
Calculation Date:	10/17/2020	3:39 PM	Method:	final_15.10	2020 mth
Sample Type:	Analysis				
Inj. Sample Notes:	None				
				and the lotter of a state of a lot	
Compound Information	lion				
Peak Name: Result Index:	CARBA	RYL Compound Number: 1	CAS Numb	er: None	Identified
Identification					locinined
Parameter Search Tune		Specification	Actual		Status
Retention Time		Hignest 13.917 ±/- 0.200	12 856 min		Pase
Match Result		13.917 +7- 0.200	N/A		1 855
Integration and Qua	intitation				
Parameter Quan Ions		Specification	Actual		Status
Calibration Equa	ation	Linear, Force, None	y = +1.7196	Se+5x	-
Area		>=500	599955		Pass
Amount		>= 0.000 cob	236827 3.480 ppb		Pass
		2 - 0.000 ppb	3.405 pp0		1 255
Quan; 1	15.1 (50.0:550.0)	Sample Speci	trum for Scan: 49	1 RT: 13.852 min. BC
	ł		BP 191 (5.234	101 (100%) sam	ple_5.xms
	A		100%-	234e+6	
	11		75%-	29.0 0	-
and the second s					
250-		-	50%-		1
	11		25% 91	206	_
			699104.1878	08631.123	
			0%	Щ	
200-			100	200 300	400 500 m/z
200			Reference Spe Scan: 497 BT	ectrum for CARB	ARYL 3 180 oph yms
			100%- 115	10.01111111.010	-
s			75%-		_
0 × 150			50%		
150		2	63		1
			25% 218 145		-
	11				
		ic.	100	200 300	400 500
100-		C 1 -	Raw Sample S	Coo Soo	400 500 m/z
	ss	ES	BP 57 (1.346e	+7=100%) samp	le 5.xms
1			100%- 57		-
			75%-		
				101	1
50-	V		50% 5.1	249e+6	4
1	h	MM	25% 55	1	1
w v	γ		1,607e+6		1
	_ <u>_</u>		0% Andreas	<u> </u>	
13.5	13.7 13.9	14.1 14.3 minutes	. 100	200 300	400 500 m/z

Print Date: 17 Oct 2020 15 57 01

Target Compound Report for #1 from sample_5 xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S06)

Print Date:	18 Oct 2020	12:33:04
-------------	-------------	----------

Target Compound Report for #1 from sample_6.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S07)

111 Date. 18 Oct 2020	12.33.47		l'arget (compound Report	for #1 from sample	e_7
Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes;	sample_7 GC-MS Area 10/17/2020 10/18/2020 Analysis None	8:20 PM 11:18 AM	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/18/2020 1 External Star 020.new\sa final_15.10	1:18 AM idard mple_7.xms 2020.mth	
Compound Information	on					
Peak Name: Result Index:	CARBAI	RYL Compound Number: 1	CAS Num	ber: None	Identified	
dentification						
Parameter Search Type		Specification Highest	Actual		Status	
Match Result		13.914 +/- 0.200	13.854 mir N/A	1.	Pass	
ntegration and Quan	titation					
Quan lons		Specification	Actual		Status	
Calibration Equat Area	ion	Linear, Force, None	y = +1.910 579307)5e+5x	Pass	
Amount		>= 0.000 ppb	174161 3.032 ppb		Pass	
Quan; 11	5.1 (50.0:550.0)		Sample Spec	trum for Scan: 492	RT: 13.860 min.	BC
	4		BP 191 (2.99)	3e+6=100%) samp	le_7.xms	
200-			2.	993e+6		
200		-	75%-			
			50%-			
	11		25% 91	206		
			408230.9963	87856.661		
			0%		do do	=
150-		4	100	200 300	400 500	m/
			Scan: 496 RT	13.914 min. std	3 180 pob.xms	
			100% 115			
,			75% 116			
			50%- 507			
100-		-	89 25%- 173	191 106		
			0%	ala ala	<u> </u>	-
SI		E	100	200 300	400 500	m/
s	s /	ES	Raw Sample S BP 57 (1.300e	Spectrum for Scan e+7=100%) sample	: 492 RT: 13.860 (7.xms	min

14.1

14.3 minutes

13.9

100%

75% 50%

25%

0%

1.300e+7

55 639e+6

100

1

191 3.002e+6

200

300

400

Print Date: 18 Oct 2020 12:35:47

50-

13.5

13.7

ns

500 m/z

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S08)

Print Date: 18 Oct 2020 12:39:07

Target Compound Report for #1 from sample_8.xm

Sample ID:	sample 8	Operator	lewol
Instrument ID:	GC-MS	Last Calibration:	10/18/2020 11:18 AM
Measurement Type:	Area	Calibration Type:	External Standard
Acquisition Date:	10/17/2020 8:44 PM	Data File:	020 new/sample 8 yms
Calculation Date:	10/18/2020 11:18 AM	Method:	final 15 10 2020 mth
Sample Type:	Analysis		
Inj. Sample Notes:	None		

Compound Information	1			
Peak Name:	CARE	BARYL		
Result Index:	1	Compound Number: 1	CAS Number: None	Identified
Identification				
Parameter Search Type		Specification Highest	Actual	Status
Retention Time Match Result		13.914 +/- 0.200	13.851 min. N/A	Pass
Integration and Quanti	tation			
Parameter Quan Ions		Specification 115.1	Actual	Status
Calibration Equatio Area Height	n	Linear, Force, None >=500	y = +1.9105e+5x 377924	Pass
Amount		>= 0.000 ppb	142294 1.978 ppb	Pass

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S09)

Sar Insi Me Acc Cal Sar Inj.	mple II trumer asurer quisitio lculatio mple T Samp	D: net ID: nent Type: nn Date: nn Date: ype: le Notes:	sample_9 GC-MS Area 10/17/2020 10/18/2020 Analysis None	9:08 PM 11:18 AM	Operato Last Cal Calibrati Data File Method:	r: ibration: on Type: e:	Jewel 10/18/2 Externa 020.r final_	2020 11:1 al Standar new\samp 15.10.20	8 AM rd le_9.xms 20.mth	
Co	mpour	nd Information								
	Peak Resul	Name: t Index:	CARBAF	Compound Number: 1		CAS Numbe	er: None		Identifi	ed
Ide	ntifica	tion							_	
	Paran	neter		Specification		Actual			Status	
	Reter Match	n Type ntion Time n Result		13.914 +/- 0.200		13.850 min. N/A			Pass	
Int	egratic	on and Quantita	ition						Status	
	Parar Quan	lons		Specification 115.1		Actual			Status	
	Calib	ration Equation		Linear, Force, None		y = +1.9105	5e+5x		Pass	
	Heigh	nt		>=500		54339			Pare	
	Amou	unt		>= 0.000 ppb		0.820 ppb			F 855	
	1	Quan ; 115.1	(50.0:550.0)			Sample Spec BP 191 (1.08	trum for Si 7e+6=100 191 1.087e+6	can: 491 %) sample	RT: 13.844 e_9.xms	imin. BC
	80-									
					50%-		102			-
					25%-	60 17	7559.250			
	70-				- 0%-	57748.202	<u>нЦ. </u>	<u></u>		
						100	200	300	400	500 m/z
						Reference Sp Scan: 496 R1	bectrum for	CARBAR	180 ppb.	xms
	60-				- 100%-	115				
s					75%-	116				
kCp					50%-	507				
	50-				- 25%-	89 173	191			
					0%		106			
	40	SI		EI	-	100	200	300	400	500 m/z
		ss		ES		Raw Sample BP 57 (1.097	Spectrum e+7=100%	for Scan:) sample	491 RT: 1 9.xms	3.844 min.

100%

75%

50%

25%

0%

1097e+7

86

t

100

191

1

200

300

400

1 581e+6 1.087e+6

Print Date: 18 Oct 2020 12:42:16

30-

20

13.5

13.7

13.9

14.1

14.3 minutes

Target Compound Report for #1 from sample_9 xms

500 m/z

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S10)

Print Date: 18 Oct 2020 12:44:45

Sample ID:	sample_10		Operator:	Jewel	
Instrument ID	GC-MS		Last Calibration:	10/18/2020	11:18 AM
Measurement Type:	Area		Calibration Type:	External Sta	andard
Acquisition Date:	10/17/2020	9:33 PM	Data File:	20 new\sa	imple_10 xms
Calculation Date:	10/18/2020	11:18 AM	Method:	final_15.1	0.2020.mth
Sample Type:	Analysis				
Inj. Sample Notes:	None				
Compound Information					
Peak Name:	CARBA	RYL			
Result Index:	1	Compound Number: 1	CAS Numbe	er: None	Identified
Identification					
Parameter		Specification	Actual		Status
Search Type		Highest	Send Conference on a		
Retention Time Match Result		13.914 +/- 0.200	13.852 min.		Pass
Match Result			N/A		
Integration and Quantita	tion				
Parameter		Specification	Actual		Status
Quan Ions Colibration Fountier		115.1			
Area		Linear, Force, None	y = +1.9105	ie+5x	Dees
Height		>=500	414418		Pass
Amount		>= 0.000 nnh	2 169 pph		Pass

Target Compound Report for #1 from sample_10.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S11)

Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_kl GC-MS Area 10/17/202 10/18/202 Analysis None	0 7:06 PM 0 11:18 AM	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/18/2020 External Sta 20.new\sa final_15.10	11:18 AM ndard mple_kl.xms 0.2020.mth
Compound Information					
Peak Name: Result Index:	CARB/	ARYL Compound Number 1	CAS Num	ner None	Identified
Identification			ono name		locitation
Parameter		Specification	Actual		Status
Search Type Retention Time Match Result		Highest 13.914 +/- 0.200	13.854 min N/A	1.	Pass
Integration and Quantita	tion				
Parameter Quan Ions		Specification 115.1	Actual		Status
Calibration Equation Area Height		Linear, Force, None >=500	y = +1.910 1.481e+6)5e+5x	Pass
Amount		>= 0.000 ppb	477315 7.753 ppb		Pass
Quan ; 115.	1 (50.0:550	.0)	Sample Sp BP 191 (7.2	ectrum for Scan: 287e+6=100%) s	491 RT: 13.860 min. BC ample_kl.xms
500-	Λ		100%- 75%- 4.469e+6	191 7.287e+6	

Print Date: 18 Oct 2020 11:23:18

Target Compound Report for #1 from sample_kl.xms

Carbaryl after photo-treatment (Chromatogram & Mass spectrum for S12)

Print Date: 18 Oct 2020 12:30:06

100-

13.5

13.7

S IN M A C S IN	ample ID: strument ID: easurement Type: cquisition Date: alculation Date: imple Type: Sample Notes:	sample_4_k GC-MS Area 10/17/2020 10/18/2020 Analysis None	I 7:31 PM 11:18 AM	Operator Last Calit Calibratic Data File Method:	pration: in Type:	Jewel 10/18/2 Externa new	2020 11:18 al Standar Isample_4 15.10.202	8 AM d I_kl.xms 20 mth	
C	ompound Information								
	Peak Name: Result Index:	CARBAR 1	Compound Number: 1		CAS Numbe	er: None		Identifi	ed
ld	entification								
	Parameter Search Type		Specification Highest		Actual			Status	
	Retention Time Match Result		13.914 +/- 0.200		13.856 min. N/A			Pass	
In	egration and Quantita	tion							
	Parameter Quan Ions		Specification 115.1		Actual			Status	
	Calibration Equation Area		Linear, Force, None >=500		y = +1.9105 1.286e+6	5e+5x		Pass	
	Amount		>= 0.000 ppb		6.733 ppb			Pass	
	– Quan ; 115.	1 (50.0:550.0)		100%	Sample Spec BP 191 (7.86	ctrum for S 14 <u>e+6=100</u> 191 7.864e+6	can: 491 %) sampl	RT: 13.85 e_4_kl.xm	0 min. BC s -
				50%-	57 4.109e+6				-
	400-			25%-	73	192 1.209e+6			-
				0%	40017.573	лI			
				Г	100	200	300	400	500 m/z
				1	Reference Sp Scan: 496 R	ectrum for	CARBAR	RYL 180 ppb	xms
	300-			100%	115				2 .
(Cps				75%-	116 507				
-	200-			25%-	89 173	191 106			-
	SI		EI	0%	100	200	300	400	500
					Daw Camala	Coosterre	(C	104 57.4	m/z

FS

14.1

14.3 minutes

13.9

100%

75%

50%

25% 0% 57 4.396e+6

100

Target Compound Report for #1 from sample_4_kl.xms

500 m/z

400

Raw Sample Spectrum for Scan: 491 RT: 13.850 min. BP 191 (7.893e+6=100%) sample 4 kl.xms

300

191 7.893e+6

200

74 192 1566.488 1.212e+6

Appendix A: Experimental Data 3

Chlorpyrifos calibration curve

Compound Summary for Chlorpyrifos

Print Date:	17 Oct 2020 10:47:42	
Comp	ound Summary Report	

1

Data Path:	c:\BrukerWS\data\13.10.2020\14.10.2020\
Last Calibration:	10/15/2020 11:19 AM
Method:	c:\brukerws\methods\pesticide_run_method_final_14.10.2020.mth
Instrument ID:	GC-MS

1)	Chlorpyrifos				
Level	File	Conc.	RT	Response	RF
		ppb		lon: 97.0	
1	Std_1_100ppb.xms				
1	Std_2_200ppb.xms				
1	Std_3_500ppb.xms				
1	Std_1_100_ppb.xms				
1	Std_2_200_ppb.xms				
1	Std_3_500_ppb.xms				
1	Carbaryl_std_9ppb.xms				
1	Carbaryl_std_18ppb				
1	arbaryl_std_180ppb				01012 5701
1	Std_1_100_ppb001.XM	S164.612	19.311	2.184e+6	21843.5/8*
2	Std_1_200_ppb001.XM	S194.122	19.313	2.576e+6	128/9.766
3	Std_1_500_ppb.XMS	489.429	19.313	6.495e+6	12989.201
	Average:		4.828		15904.183
	RF Range:				12723.346 - 19085.019

Print Date: 17 Oct 2020 10:52:19

Target Compound Report for #1 from sample_1001.xms

Sample ID. Sample_ Instrument ID. GC-MS Measurement Type: Area Acquisition Date: 10/16/20 Calculation Date: 10/17/20 Sample Type: Analysis Inj. Sample Notes: None	2 20 8:46 PM 20 11:07 AM	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/17/2020 11 External Stand 10.2020\sam 020 -calibrati	:07 AM lard nple_2.xms ion.mth
Compound Information Peak Name: Chlor Result Index: 1 Identification	pyrifos Compound Number: 1	CAS Numbe	er: 2921-88-2	Missing
Parameter Search Type Retention Time Match Result	Specification Highest 19.312 +/- 0.200	<u>Actual</u> 19.312 min. N/A		<u>Status</u> Fail
Integration and Quantitation Parameter Quan lons Calibration Equation Area Height Amount	Specification 97.0 Linear, Force, None >=500 >= 0.000 ppb	<u>Actual</u> y = +1.3270 0 0 0.000 ppb	e+4x	<u>Status</u> Fail
Quan; 97.0 (50.0:550.0) 	Sample Spec BP 73 (41471 100%- 73 414715.794 75%- 50%- 147 115871 25%- 0%- 100	trum for Scan: 883 5.794=100%) sam .179 	ART: 19.312 min. BC pple 2 xms
90- 90-		Reference Sp Scan: 883 RT 100%-97 999 75%-65 381 125 25%-219 0%-100	ectrum for Chlorpy 19.312 min. std 197 478 201 258 314 149 168 184 149 200 300	rrifos 1 500 ppb.xms - - - 400 500 m/z
80-	ES	Raw Sample S BP 57 (3.082e) 100%- 75%- 50%- 55 853488.162 25%- 4	Spectrum for Scan: +6=100%) sample 207 17494.423	: 883 RT: 19.312 min. <u>2.xms</u>
70-18.9 19.1 19.	3 19.5 19.7 minutes	100	200 300	400 500 m/z

Print Date: 17 Oct 2020 11.12:42

Target Compound Report for #1 from sample_2 xms

rint Date: 17 Oct 2020 11:18:02			Target Compound Report for #1 from sample_3001				
Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_3 GC-MS Area 10/16/2020 9:12 PM 10/17/2020 11:07 AM Analysis None		Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/17/2020 11 External Stand 2020\sample 020 -calibrati	07 AM lard _3001.xms ion.mth		
Compound Information							
Peak Name:	Chlorg	pyrifos			•••		
Result Index:	1	Compound Number: 1	CAS Numb	er: 2921-88-2	Missing		
Identification							
Parameter Search Type		Specification	Actual		Status		
Retention Time Match Result		19.312 +/- 0.200	19.312 min N/A	L.	Fail		
Integration and Quantita	tion						
Parameter Quan Ions		Specification 97.0	Actual		Status		
Calibration Equation Area Height		Linear, Force, None >=500	y = +1.327 0	0e+4x	Fail		
Amount		>= 0.000 ppb	0.000 ppb				

		. u.get compe	sine report to we norm sample_4001.x
Sample ID: nstrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: nj. Sample Notes:	sample_4 GC-MS Area 10/16/2020 9:39 PM 10/17/2020 11:07 AM Analysis None	Operator: Last Calibration: Calibration Type: Data File: Method:	Jewel 10/17/2020 11:07 AM External Standard 2020\sample_4001.xms 020 -calibration.mth
Compound Information			
Peak Name:	Chlorpyrifos		
Result Index:	1 Compound Number: 1	CAS Number	: 2921-88-2 Missing
Parameter	Specification	Actual	Status
Search Type Retention Time	Highest	10.212 min	<u>Giùlas</u>
Match Result	19.312 +/- 0.200	N/A	Fail
tegration and Quantitat	tion		
Parameter Quan lons	Specification 97.0	Actual	Status
Calibration Equation	Linear, Force, None	y = +1.3270e	+4x
Height	>=500	0	Fail
Amount	>= 0.000 ppb	0.000 ppb	
90- 80- 2 70- 60- 51 55		BP 73 (26)3 100%- 173 267 372.606 75%- 97 50%- 97 25%- 70513.222 0%- 100 Reference S Scan: 883 R ¹ 100%- 97 75%- 50%- 50%- 97 75%- 50%- 50%- 97 999 75%- 50%- 65 381 125 25%- 1219 0%- 100 Raw Sample BP 57 (3.068 100%- 57 3068e+6	341 34972.007 200 300 400 500 pectrum for Chlorpyrifos T: 19.312 min. std 1 500 ppb.xms 197 478 201 258 314 149 168 184 1 200 300 400 500 Spectrum for Scan: 882 RT: 19.309 m e+6=100%) sample_4001.xms
50-		75%- 50%- 55 25%- 711671.810	207 387657.265

Print Date 17 Oct 2020 11	29:18	(96)	Target	Compound Report for	or #1 from sample_5.xm
Sample ID: Instrument ID: Measurement Type: Acquisition Date: Calculation Date: Sample Type: Inj. Sample Notes:	sample_5 GC-MS Area 10/16/2020 1 10/17/2020 1 Analysis None	0:05 PM 1:07 AM	Operator: Last Calibration: Calibration Type: Data File: Method:	Dperator: Jewel ast Calibration: 10/17/2020 11 Calibration Type: External Stand Data File:10.2020\san Method:020 -calibrat	
Compound Information Peak Name: Result Index:	Chlorpyrif	os Compound Number 1	CAS Num	her: 2921-88-2	Missing
Identification					Wissing
Parameter Search Type Retention Time Match Result		Specification Highest 19.312 +/- 0.200	<u>Actual</u> 19.312 mi N/A	n.	<u>Status</u> Fail
Integration and Quantita	tion				
Parameter Quan lons		Specification 97.0	Actual		Status
Calibration Equation Area Height		Linear, Force, None >=500	y = +1.32 0 0	70e+4x	Fail
Amount		>= 0.000 ppb	0.000 ppb		
Quan ; 97.0	(50.0:550.0)		Sample Sp BP 149 (10 100%- 75%- 50%- 25%- 0%- 100 100 Reference Scan: 883 f 100%- 97 999	ectrum for Scan. 86. 8687.130=100%) sa 149 7.130 281 71104.016 3 1366 200 300 Spectrum for Chlorp RT: 19.312 min, std	42 4965 400 500 m/z 1 500 ppb.xms
80- 80-	Y,		65 50%-65 381 125 25%-215 0%-100	197 478 201 258 314 149 168 184 200 300	400 500
70-		Les V	Raw Sampi BP 57 (3.28 100%- 57 3283e+6 75%- 50%-	e Spectrum for Scar 33e+6=100%) sampl	n: 882 RT: 19.310 min. e 5.xms -
60- \		V .	25%-752463.998	207 385644.933	
18.9 19.	1 19.3	19.5 19.7 minute	s 100	200 300	400 500 m/z

Appendix B: Photo gallery

Fig 12. Sample collection, filtration, sample extraction

Fig 13. Storage of sample extract, Preparation of standard solution of carbaryl and chlorpyrifos

Fig 14. Photo-treatment of water samples using disk polarimeter, Preparation of calibration curve for carbaryl and chlorpyrifos using GCMS

文 OPERATION MSWS 45X-G	C Method Run: 15.25 End 19.00 2 0555 #
15.25	Oven 182.3 °C
Status Run	Signals
Ū Vial 15	Front FID 0.000 μV (7 8 9 →1 4 5 6 ↔
Force Standby	
@-@-	

Fig 15. Sample analysis using GCMS, Data analysis using MS excel

Brief Biography

The author passed the Secondary School Certificate Examination from Dr. Khastagir Government Girls' High School, Chattogram, and then Higher Secondary Certificate Examination from Chattogram College, Chattogram. She obtained her B.Sc. (Hon's) in Food Science and Technology from the Faculty of Food Science and Technology at Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh. She was awarded with the prestigious Prime Minister Gold Medal 2017 and the Chancelor Award in the year 2017 for her result in B.Sc. (Hon's). Now, she is a candidate for the degree of Master of Science in Food Chemistry and Quality Assurance under the Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University (CVASU). She has an immense interest to work in improving the quality of food sector through proper guidance and suggestions and to create awareness among people about food safety and quality.